已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Large-Scale Landslide Susceptibility Mapping Using an Integrated Machine Learning Model: A Case Study in the Lvliang Mountains of China

支持向量机 山崩 随机森林 机器学习 计算机科学 数据挖掘 接收机工作特性 人工智能 工程类 岩土工程
作者
Yin Xing,Jianping Yue,Zizheng Guo,Chen Yang,Jia Hu,Anna Travé
出处
期刊:Frontiers in Earth Science [Frontiers Media SA]
卷期号:9 被引量:30
标识
DOI:10.3389/feart.2021.722491
摘要

Integration of different models may improve the performance of landslide susceptibility assessment, but few studies have tested it. The present study aims at exploring the way to integrating different models and comparing the results among integrated and individual models. Our objective is to answer this question: Will the integrated model have higher accuracy compared with individual model? The Lvliang mountains area, a landslide-prone area in China, was taken as the study area, and ten factors were considered in the influencing factors system. Three basic machine learning models (the back propagation (BP), support vector machine (SVM), and random forest (RF) models) were integrated by an objective function where the weight coefficients among different models were computed by the gray wolf optimization (GWO) algorithm. 80 and 20% of the landslide data were randomly selected as the training and testing samples, respectively, and different landslide susceptibility maps were generated based on the GIS platform. The results illustrated that the accuracy expressed by the area under the receiver operating characteristic curve (AUC) of the BP-SVM-RF integrated model was the highest (0.7898), which was better than that of the BP (0.6929), SVM (0.6582), RF (0.7258), BP-SVM (0.7360), BP-RF (0.7569), and SVM-RF models (0.7298). The experimental results authenticated the effectiveness of the BP-SVM-RF method, which can be a reliable model for the regional landslide susceptibility assessment of the study area. Moreover, the proposed procedure can be a good option to integrate different models to seek an “optimal” result.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小叶完成签到 ,获得积分10
刚刚
刚刚
科研通AI2S应助白华苍松采纳,获得10
1秒前
能干世界完成签到 ,获得积分20
1秒前
Fiona完成签到 ,获得积分10
1秒前
linxiangFYYY完成签到,获得积分10
1秒前
dingyun完成签到,获得积分20
3秒前
jackie完成签到,获得积分10
4秒前
oceanao应助科研通管家采纳,获得10
5秒前
竹筏过海应助科研通管家采纳,获得30
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
5秒前
紫荆发布了新的文献求助10
5秒前
5秒前
青青子萧完成签到,获得积分20
6秒前
7秒前
幼萱完成签到 ,获得积分10
8秒前
8秒前
黎长江完成签到,获得积分10
8秒前
李白发布了新的文献求助10
9秒前
88C真是太神奇啦完成签到 ,获得积分10
9秒前
王太白完成签到,获得积分10
9秒前
种喜欢的花完成签到 ,获得积分10
10秒前
十三完成签到 ,获得积分10
10秒前
10秒前
李爱国应助zai采纳,获得10
10秒前
悄悄完成签到 ,获得积分10
10秒前
巫马尔槐完成签到,获得积分10
10秒前
青青子萧发布了新的文献求助10
12秒前
许三问完成签到 ,获得积分0
13秒前
Akim应助ARESCI采纳,获得10
14秒前
14秒前
Dr大壮发布了新的文献求助20
15秒前
15秒前
按照国际惯例完成签到 ,获得积分10
16秒前
鲨猫收藏家完成签到 ,获得积分10
16秒前
一朵棉花糖完成签到 ,获得积分10
17秒前
随机子完成签到,获得积分10
17秒前
陈道哥完成签到 ,获得积分10
19秒前
19秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164682
求助须知:如何正确求助?哪些是违规求助? 2815679
关于积分的说明 7909966
捐赠科研通 2475253
什么是DOI,文献DOI怎么找? 1318069
科研通“疑难数据库(出版商)”最低求助积分说明 631984
版权声明 602282