ScCAEs: deep clustering of single-cell RNA-seq via convolutional autoencoder embedding and soft K-means

聚类分析 自编码 计算机科学 相关聚类 人工智能 降维 嵌入 模式识别(心理学) 高维数据聚类 CURE数据聚类算法 约束聚类 深度学习 数据挖掘
作者
Hang Hu,Zhong Li,Xiangjie Li,Minzhe Yu,Xiutao Pan
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (1) 被引量:13
标识
DOI:10.1093/bib/bbab321
摘要

Clustering and cell type classification are a vital step of analyzing scRNA-seq data to reveal the complexity of the tissue (e.g. the number of cell types and the transcription characteristics of the respective cell type). Recently, deep learning-based single-cell clustering algorithms become popular since they integrate the dimensionality reduction with clustering. But these methods still have unstable clustering effects for the scRNA-seq datasets with high dropouts or noise. In this study, a novel single-cell RNA-seq deep embedding clustering via convolutional autoencoder embedding and soft K-means (scCAEs) is proposed by simultaneously learning the feature representation and clustering. It integrates the deep learning with convolutional autoencoder to characterize scRNA-seq data and proposes a regularized soft K-means algorithm to cluster cell populations in a learned latent space. Next, a novel constraint is introduced to the clustering objective function to iteratively optimize the clustering results, and more importantly, it is theoretically proved that this objective function optimization ensures the convergence. Moreover, it adds the reconstruction loss to the objective function combining the dimensionality reduction with clustering to find a more suitable embedding space for clustering. The proposed method is validated on a variety of datasets, in which the number of clusters in the mentioned datasets ranges from 4 to 46, and the number of cells ranges from 90 to 30 302. The experimental results show that scCAEs is superior to other state-of-the-art methods on the mentioned datasets, and it also keeps the satisfying compatibility and robustness. In addition, for single-cell datasets with the batch effects, scCAEs can ensure the cell separation while removing batch effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Kaia发布了新的文献求助30
3秒前
3秒前
星辰大海应助yzthk采纳,获得10
3秒前
爆米花应助无奈蛋挞采纳,获得20
3秒前
Liway完成签到,获得积分10
3秒前
3秒前
FYW发布了新的文献求助10
3秒前
香蕉觅云应助盟盟采纳,获得10
4秒前
传奇3应助liz采纳,获得10
4秒前
funi完成签到,获得积分10
4秒前
薄雪草发布了新的文献求助30
4秒前
5秒前
游悠悠完成签到,获得积分10
5秒前
长沙大帅哥完成签到 ,获得积分10
5秒前
5秒前
6秒前
6秒前
tomjim100发布了新的文献求助10
6秒前
今晚睇paper完成签到,获得积分10
7秒前
大模型应助高又行采纳,获得10
7秒前
7秒前
8秒前
FashionBoy应助狂野思卉采纳,获得10
8秒前
珠u发布了新的文献求助10
9秒前
嗡嗡完成签到,获得积分10
9秒前
传奇3应助爱吃香菜采纳,获得10
10秒前
hata233发布了新的文献求助10
10秒前
W1006完成签到,获得积分10
10秒前
Yjj发布了新的文献求助10
11秒前
YUAN完成签到,获得积分10
11秒前
Jasper应助贺知什么书采纳,获得10
12秒前
12秒前
小白一号完成签到,获得积分10
12秒前
xiangyuan发布了新的文献求助10
13秒前
13秒前
彼岸花完成签到,获得积分10
14秒前
14秒前
tomjim100完成签到,获得积分10
14秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167914
求助须知:如何正确求助?哪些是违规求助? 2819401
关于积分的说明 7926122
捐赠科研通 2479250
什么是DOI,文献DOI怎么找? 1320684
科研通“疑难数据库(出版商)”最低求助积分说明 632856
版权声明 602443