Minimum Adversarial Distribution Discrepancy for Domain Adaptation

对抗制 计算机科学 熵(时间箭头) 领域(数学分析) 公制(单位) 特征(语言学) 人工智能 域适应 分歧(语言学) 理论计算机科学 数学 分类器(UML) 物理 数学分析 哲学 量子力学 经济 语言学 运营管理
作者
Xiaohan Huang,Xuesong Wang,Qiang Yu,Yuhu Cheng
出处
期刊:IEEE Transactions on Cognitive and Developmental Systems [Institute of Electrical and Electronics Engineers]
卷期号:14 (4): 1440-1448 被引量:1
标识
DOI:10.1109/tcds.2021.3104231
摘要

Domain adaptation (DA) refers to generalize a learning technique across the source domain and target domain under different distributions. Therefore, the essential problem in DA is how to reduce the distribution discrepancy between the source and target domains. Typical methods are to embed the adversarial learning technique into deep networks to learn transferable feature representations. However, existing adversarial related DA methods may not sufficiently minimize the distribution discrepancy. In this article, a DA method minimum adversarial distribution discrepancy (MADD) is proposed by combining feature distribution with adversarial learning. Specifically, we design a novel divergence metric loss, named maximum mean discrepancy based on conditional entropy (MMD-CE), and embed it in the adversarial DA network. The proposed MMD-CE loss can address two problems: 1) the misalignment from different class distributions between domains and 2) the equilibrium challenge issue in adversarial DA. Comparative experiments on Office-31, ImageCLEF-DA, and Office-Home data sets with state-of-the-art methods show that our method has some advantageous performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助袁艺珊采纳,获得10
1秒前
Hello应助Li采纳,获得10
1秒前
1秒前
1秒前
H_完成签到 ,获得积分10
1秒前
迷人若冰完成签到,获得积分20
2秒前
研友_VZG7GZ应助wjw采纳,获得10
3秒前
李灼洋发布了新的文献求助10
4秒前
ecos完成签到,获得积分10
4秒前
范1发布了新的文献求助30
4秒前
xzy发布了新的文献求助10
4秒前
5秒前
我是老大应助我爱吃肉采纳,获得10
5秒前
5秒前
zz完成签到 ,获得积分10
6秒前
浮游应助诺坎普的晚风采纳,获得10
7秒前
完美世界应助LX采纳,获得10
7秒前
Lws发布了新的文献求助10
8秒前
贪玩手链完成签到 ,获得积分10
8秒前
ding应助wth采纳,获得10
8秒前
WWwww完成签到 ,获得积分10
9秒前
Hello应助耳东陈采纳,获得10
9秒前
科目三应助乐观黑米采纳,获得10
9秒前
9秒前
素笺生花完成签到,获得积分10
9秒前
9秒前
在水一方应助哈哈哈采纳,获得10
9秒前
过冷风应助碧蓝的寒风采纳,获得10
10秒前
李健应助陈chen采纳,获得10
12秒前
Orange应助邢雪情采纳,获得10
12秒前
13秒前
13秒前
SherlockRobin完成签到,获得积分10
14秒前
14秒前
优美的谷完成签到,获得积分10
15秒前
领导范儿应助wang采纳,获得10
15秒前
fanghua发布了新的文献求助10
16秒前
17秒前
周发发发布了新的文献求助10
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4940890
求助须知:如何正确求助?哪些是违规求助? 4206923
关于积分的说明 13075904
捐赠科研通 3985604
什么是DOI,文献DOI怎么找? 2182211
邀请新用户注册赠送积分活动 1197838
关于科研通互助平台的介绍 1110117