已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Adaptive Light Estimation using Dynamic Filtering for Diverse Lighting Conditions

滤波器(信号处理) 渲染(计算机图形)
作者
Junhong Zhao,Andrew Chalmers,Taehyun Rhee
出处
期刊:IEEE Transactions on Visualization and Computer Graphics [Institute of Electrical and Electronics Engineers]
卷期号:27 (11): 4097-4106 被引量:1
标识
DOI:10.1109/tvcg.2021.3106497
摘要

High dynamic range (HDR) panoramic environment maps are widely used to illuminate virtual objects to blend with real-world scenes. However, in common applications for augmented and mixed-reality (AR/MR), capturing 360° surroundings to obtain an HDR environment map is often not possible using consumer-level devices. We present a novel light estimation method to predict 360° HDR environment maps from a single photograph with a limited field-of-view (FOV). We introduce the Dynamic Lighting network (DLNet), a convolutional neural network that dynamically generates the convolution filters based on the input photograph sample to adaptively learn the lighting cues within each photograph. We propose novel Spherical Multi-Scale Dynamic (SMD) convolutional modules to dynamically generate sample-specific kernels for decoding features in the spherical domain to predict 360° environment maps. Using DLNet and data augmentations with respect to FOV, an exposure multiplier, and color temperature, our model shows the capability of estimating lighting under diverse input variations. Compared with prior work that fixes the network filters once trained, our method maintains lighting consistency across different exposure multipliers and color temperature, and maintains robust light estimation accuracy as FOV increases. The surrounding lighting information estimated by our method ensures coherent illumination of 3D objects blended with the input photograph, enabling high fidelity augmented and mixed reality supporting a wide range of environmental lighting conditions and device sensors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
毛豆应助Sunny采纳,获得10
1秒前
2秒前
3秒前
___淡发布了新的文献求助30
3秒前
4秒前
小羽毛发布了新的文献求助10
5秒前
5秒前
fqm520发布了新的文献求助10
5秒前
小林完成签到 ,获得积分10
5秒前
脑洞疼应助在明理摸鱼采纳,获得10
6秒前
安然发布了新的文献求助10
6秒前
kai发布了新的文献求助30
6秒前
刻苦的溪流完成签到,获得积分10
7秒前
lx发布了新的文献求助10
9秒前
Gonboo发布了新的文献求助10
9秒前
9秒前
9秒前
毛豆应助Muran采纳,获得10
10秒前
大个应助高兴吐司采纳,获得10
12秒前
12秒前
13秒前
15秒前
科研通AI2S应助阿钉采纳,获得10
15秒前
英俊的凡梅完成签到,获得积分10
15秒前
17秒前
零慧完成签到,获得积分10
17秒前
牛仔很忙发布了新的文献求助10
18秒前
慕青应助孙行行采纳,获得10
18秒前
fqm520完成签到,获得积分10
18秒前
19秒前
斯文败类发布了新的文献求助10
19秒前
20秒前
浦肯野应助sky采纳,获得20
20秒前
高兴吐司完成签到,获得积分20
22秒前
飞天三叉戟应助蛋蛋采纳,获得20
22秒前
科目三应助ASD123采纳,获得10
24秒前
科研通AI40应助ASD123采纳,获得10
24秒前
金新皓发布了新的文献求助10
24秒前
高兴吐司发布了新的文献求助10
24秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471259
求助须知:如何正确求助?哪些是违规求助? 3064129
关于积分的说明 9087605
捐赠科研通 2754938
什么是DOI,文献DOI怎么找? 1511647
邀请新用户注册赠送积分活动 698541
科研通“疑难数据库(出版商)”最低求助积分说明 698423