Realizing enhanced dielectric and mechanical performance of polyvinylidene fluoride/SiC nanocomposites through a bio-inspired interface design

材料科学 聚偏氟乙烯 纳米复合材料 电介质 复合材料 碳化硅 介电损耗 高-κ电介质 介电常数 聚合物 光电子学
作者
Yizhang Tong,Wanjing Zhao,Wei Wu,Dongli Zhang,Guangjian He,Zhitao Yang,Xianwu Cao
出处
期刊:Advanced composites and hybrid materials [Springer Science+Business Media]
卷期号:5 (1): 263-277 被引量:39
标识
DOI:10.1007/s42114-021-00333-x
摘要

The incorporation of high-dielectric permittivity ceramic or conductive fillers into the polymer is an effective method to obtain flexible high-performance dielectric materials, but it is still a huge challenge to achieve a balance between dielectric and mechanical properties. In this paper, we report a polyvinylidene fluoride (PVDF) nanocomposite based on a novel crab leg-like filler, in which Ag nanoparticles (AgNPs) were decorated on the surface of polydopamine (PDA)-coated silicon carbide (SiC) nanowhiskers (NWs). Compared with the nanocomposites with as-received SiC, this PVDF/SiC@PDA@Ag nanocomposites exhibited significantly suppressed dielectric loss (0.03 at 1 kHz) and leakage current. The Argant plot ( $${\varepsilon }^{^{\prime}}$$ - $${\varepsilon }^{\prime\prime}$$ curve) and electric modulus analysis demonstrated that the inhibition of the organic layer of PDA to interface polarization and the coulomb-blockade effect of AgNPs hindered carrier transport, which resulted in the largely suppressed dielectric loss. Furthermore, while the dielectric properties were improved, the PVDF/SiC@PDA@Ag nanocomposites also exhibited excellent mechanical and thermal conductivity. Ultimately, the nanocomposites prepared via this method are promising for applications in microelectronic devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助小郑开心努力采纳,获得10
1秒前
1秒前
微笑立轩完成签到,获得积分10
2秒前
SWZ发布了新的文献求助100
2秒前
5秒前
方远锋完成签到,获得积分10
5秒前
6秒前
7秒前
7秒前
发发发完成签到 ,获得积分10
8秒前
今后应助SJ_Wang采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
斯文的飞雪完成签到,获得积分10
10秒前
啊啊发布了新的文献求助10
10秒前
SCI发发发发布了新的文献求助10
11秒前
徐徐完成签到,获得积分10
12秒前
12秒前
阿洁发布了新的文献求助10
12秒前
执着雪青应助海拾月采纳,获得10
12秒前
h123123发布了新的文献求助10
13秒前
情怀应助学术蟑螂采纳,获得10
14秒前
14秒前
研友_enP05n发布了新的文献求助10
15秒前
昀松完成签到,获得积分10
16秒前
onlyan发布了新的文献求助20
17秒前
络梦摘星辰完成签到,获得积分10
18秒前
memedaaaah发布了新的文献求助10
19秒前
7777完成签到,获得积分10
19秒前
阔达忆秋完成签到 ,获得积分10
20秒前
明天完成签到,获得积分10
21秒前
了了完成签到,获得积分10
22秒前
23秒前
24秒前
24秒前
耿耿星河完成签到,获得积分10
25秒前
26秒前
27秒前
王jj发布了新的文献求助10
28秒前
学术蟑螂发布了新的文献求助10
29秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125149
求助须知:如何正确求助?哪些是违规求助? 4329133
关于积分的说明 13490086
捐赠科研通 4163894
什么是DOI,文献DOI怎么找? 2282628
邀请新用户注册赠送积分活动 1283777
关于科研通互助平台的介绍 1223019