Towards ultrahigh-energy-density flexible aqueous rechargeable Ni//Bi batteries: Free-standing hierarchical nanowire arrays core-shell heterostructures system

材料科学 纳米技术 纳米线 阳极 储能 阴极 电池(电) 数码产品 电极 光电子学 电气工程 工程类 物理化学 功率(物理) 物理 化学 量子力学
作者
Qiulong Li,Shuang Jing,Zhenzhong Yong,Qichong Zhang,Chenglong Liu,Kaiping Zhu,Yongbao Feng,Wenbin Gong,Yagang Yao
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:42: 815-825 被引量:33
标识
DOI:10.1016/j.ensm.2021.08.032
摘要

Fiber-shaped energy storage devices featuring characteristics of macroscopic one-dimension, light weight, super-flexibility, and weavability demonstrate promising prospects for a category of crucial fields such as portable and wearable electronics. Particularly, fiber-shaped aqueous rechargeable (FAR) Ni//Bi batteries can further promote the development of wearable electronics due to their characteristics of low cost, flat discharge plateau, and no dendrite growth. However, it is currently challenging to simultaneously achieve high energy and power densities, and safety, which has seriously restricted their promising applications. Herein, a new type of FAR Ni//Bi battery with extraordinary electrochemical performance is created from hierarchical core-shell heterostructured electrodes, where bismuth trioxide (Bi2O3) nanosheets (NSs) directly grown on the surface of titanium nitride (TiN) nanowire arrays (NWAs) act as the anode while nickel hydroxide (Ni(OH)2) NSs anchored on zinc doping cobalt-nickel-oxide (Zn-CoNiO2) NWAs surface act as the cathode. Our as-assembled FAR Ni//Bi battery demonstrates ultrahigh energy density of 314.96 mWh cm−3 and remarkable power density of 20.04 W cm−3 with 88.6% capacity retention after 5000 cycles, which significantly outperform most state-of-the-art FAR batteries. This study offers a comprehensive and efficient strategy to develop high-performance aqueous rechargeable batteries by designing hierarchical core-shell heterostructured electrodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南佳完成签到,获得积分20
刚刚
刚刚
一一完成签到,获得积分10
刚刚
刚刚
1秒前
韭菜盒子发布了新的文献求助10
1秒前
1秒前
1秒前
Cochane发布了新的文献求助10
2秒前
monday完成签到,获得积分10
2秒前
sunnyhhh完成签到,获得积分10
2秒前
aaa完成签到,获得积分10
2秒前
2秒前
2秒前
勿庸发布了新的文献求助10
3秒前
犹豫的忆梅完成签到,获得积分10
3秒前
3秒前
周助完成签到,获得积分10
3秒前
jack1511完成签到,获得积分20
3秒前
敏感初露完成签到,获得积分10
4秒前
冯冯完成签到 ,获得积分10
4秒前
科研通AI5应助落寞的紫山采纳,获得10
4秒前
gaos发布了新的文献求助10
4秒前
嘻嘻完成签到,获得积分10
4秒前
脑洞疼应助哈哈采纳,获得10
4秒前
Yfvonne完成签到,获得积分10
5秒前
蕾蕾不爱科研完成签到,获得积分10
5秒前
苹果南烟完成签到,获得积分10
5秒前
5秒前
可靠的书本完成签到,获得积分10
5秒前
5秒前
thousandlong发布了新的文献求助10
6秒前
完美世界应助艺玲采纳,获得10
6秒前
尘南浔完成签到 ,获得积分10
6秒前
月亮明星完成签到,获得积分10
6秒前
Jasper应助einuo采纳,获得10
7秒前
7秒前
8秒前
科研小bai完成签到,获得积分10
8秒前
深情安青应助韭菜盒子采纳,获得10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740