Semi-Supervised Deep Transfer Learning for Benign-Malignant Diagnosis of Pulmonary Nodules in Chest CT Images

人工智能 计算机科学 恶性肿瘤 深度学习 肺癌 肺孤立结节 模式识别(心理学) 放射科 学习迁移 医学 结核(地质) 计算机断层摄影术 病理 内科学 生物 古生物学
作者
Feng Shi,Bojiang Chen,Qiqi Cao,Ying Wei,Qing Zhou,Rui Zhang,Yaojie Zhou,Wenjie Yang,Xiang Wang,Rongrong Fan,Fan Yang,Yanbo Chen,Weimin Li,Yaozong Gao,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (4): 771-781 被引量:79
标识
DOI:10.1109/tmi.2021.3123572
摘要

Lung cancer is the leading cause of cancer deaths worldwide. Accurately diagnosing the malignancy of suspected lung nodules is of paramount clinical importance. However, to date, the pathologically-proven lung nodule dataset is largely limited and is highly imbalanced in benign and malignant distributions. In this study, we proposed a Semi-supervised Deep Transfer Learning (SDTL) framework for benign-malignant pulmonary nodule diagnosis. First, we utilize a transfer learning strategy by adopting a pre-trained classification network that is used to differentiate pulmonary nodules from nodule-like tissues. Second, since the size of samples with pathological-proven is small, an iterated feature-matching-based semi-supervised method is proposed to take advantage of a large available dataset with no pathological results. Specifically, a similarity metric function is adopted in the network semantic representation space for gradually including a small subset of samples with no pathological results to iteratively optimize the classification network. In this study, a total of 3,038 pulmonary nodules (from 2,853 subjects) with pathologically-proven benign or malignant labels and 14,735 unlabeled nodules (from 4,391 subjects) were retrospectively collected. Experimental results demonstrate that our proposed SDTL framework achieves superior diagnosis performance, with accuracy = 88.3%, AUC = 91.0% in the main dataset, and accuracy = 74.5%, AUC = 79.5% in the independent testing dataset. Furthermore, ablation study shows that the use of transfer learning provides 2% accuracy improvement, and the use of semi-supervised learning further contributes 2.9% accuracy improvement. Results implicate that our proposed classification network could provide an effective diagnostic tool for suspected lung nodules, and might have a promising application in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
彭佳乐发布了新的文献求助10
1秒前
香蕉觅云应助你好采纳,获得10
1秒前
HOME发布了新的文献求助10
3秒前
坦率的香烟完成签到,获得积分10
3秒前
华仔应助瑞士奶糖采纳,获得10
3秒前
4秒前
5秒前
刘小小123完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
万能图书馆应助vicky采纳,获得10
6秒前
爱学习的华夫饼完成签到,获得积分10
6秒前
科研通AI6应助Katze采纳,获得10
7秒前
7秒前
啊啊啊发布了新的文献求助10
7秒前
7秒前
7秒前
ding应助HOME采纳,获得10
8秒前
Nabi发布了新的文献求助10
8秒前
8秒前
SciGPT应助hh采纳,获得10
9秒前
9秒前
9秒前
11秒前
林海之光发布了新的文献求助10
12秒前
拼搏的龙完成签到,获得积分10
12秒前
落后乞关注了科研通微信公众号
12秒前
二七发布了新的文献求助10
12秒前
一百发布了新的文献求助10
12秒前
成小调发布了新的文献求助10
14秒前
浮游应助玥越采纳,获得10
16秒前
why完成签到,获得积分10
16秒前
酷波er应助Nabi采纳,获得10
16秒前
子车茗应助科研通管家采纳,获得10
16秒前
充电宝应助科研通管家采纳,获得10
16秒前
16秒前
Hello应助科研通管家采纳,获得10
16秒前
顾矜应助科研通管家采纳,获得10
16秒前
科目三应助黑猫警长采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5553580
求助须知:如何正确求助?哪些是违规求助? 4638120
关于积分的说明 14652281
捐赠科研通 4579970
什么是DOI,文献DOI怎么找? 2512009
邀请新用户注册赠送积分活动 1486966
关于科研通互助平台的介绍 1457791