Semi-Supervised Deep Transfer Learning for Benign-Malignant Diagnosis of Pulmonary Nodules in Chest CT Images

人工智能 计算机科学 恶性肿瘤 深度学习 肺癌 肺孤立结节 模式识别(心理学) 放射科 学习迁移 医学 结核(地质) 计算机断层摄影术 病理 内科学 生物 古生物学
作者
Feng Shi,Bojiang Chen,Qiqi Cao,Ying Wei,Qing Zhou,Rui Zhang,Yaojie Zhou,Wenjie Yang,Xiang Wang,Rongrong Fan,Fan Yang,Yanbo Chen,Weimin Li,Yaozong Gao,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (4): 771-781 被引量:79
标识
DOI:10.1109/tmi.2021.3123572
摘要

Lung cancer is the leading cause of cancer deaths worldwide. Accurately diagnosing the malignancy of suspected lung nodules is of paramount clinical importance. However, to date, the pathologically-proven lung nodule dataset is largely limited and is highly imbalanced in benign and malignant distributions. In this study, we proposed a Semi-supervised Deep Transfer Learning (SDTL) framework for benign-malignant pulmonary nodule diagnosis. First, we utilize a transfer learning strategy by adopting a pre-trained classification network that is used to differentiate pulmonary nodules from nodule-like tissues. Second, since the size of samples with pathological-proven is small, an iterated feature-matching-based semi-supervised method is proposed to take advantage of a large available dataset with no pathological results. Specifically, a similarity metric function is adopted in the network semantic representation space for gradually including a small subset of samples with no pathological results to iteratively optimize the classification network. In this study, a total of 3,038 pulmonary nodules (from 2,853 subjects) with pathologically-proven benign or malignant labels and 14,735 unlabeled nodules (from 4,391 subjects) were retrospectively collected. Experimental results demonstrate that our proposed SDTL framework achieves superior diagnosis performance, with accuracy = 88.3%, AUC = 91.0% in the main dataset, and accuracy = 74.5%, AUC = 79.5% in the independent testing dataset. Furthermore, ablation study shows that the use of transfer learning provides 2% accuracy improvement, and the use of semi-supervised learning further contributes 2.9% accuracy improvement. Results implicate that our proposed classification network could provide an effective diagnostic tool for suspected lung nodules, and might have a promising application in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Orange应助ysxl采纳,获得10
刚刚
Nuyoah完成签到,获得积分10
1秒前
HuI完成签到,获得积分20
1秒前
小小完成签到,获得积分10
1秒前
tuotuo发布了新的文献求助10
3秒前
zunzun驳回了呵呵应助
3秒前
兜有米完成签到,获得积分10
3秒前
coolru完成签到,获得积分10
3秒前
爆米花应助尕翠采纳,获得10
4秒前
小木虫发布了新的文献求助10
4秒前
4秒前
pjc完成签到,获得积分10
4秒前
xwl完成签到,获得积分10
5秒前
5秒前
tang61发布了新的文献求助10
5秒前
所所应助徐甲淇采纳,获得10
6秒前
光电很亮完成签到,获得积分10
6秒前
ccc完成签到,获得积分0
6秒前
7秒前
具体问题具体分析完成签到,获得积分10
7秒前
Axolotll完成签到 ,获得积分10
7秒前
xu完成签到,获得积分10
8秒前
生动丸子完成签到 ,获得积分10
8秒前
8秒前
YBY完成签到,获得积分10
8秒前
CipherSage应助zyc采纳,获得10
8秒前
Rdeohio完成签到,获得积分20
8秒前
华仔应助liaomr采纳,获得10
8秒前
科研废物完成签到,获得积分10
8秒前
mslmsl完成签到,获得积分10
9秒前
深情安青应助米米碎片采纳,获得10
9秒前
Lucas完成签到,获得积分10
9秒前
zeran发布了新的文献求助10
9秒前
不是省油的灯完成签到,获得积分10
9秒前
9秒前
阿氏之光完成签到,获得积分10
9秒前
跑不动啦完成签到,获得积分10
10秒前
充电宝应助漂亮夏兰采纳,获得10
10秒前
liucc完成签到,获得积分10
10秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388033
求助须知:如何正确求助?哪些是违规求助? 4509993
关于积分的说明 14033613
捐赠科研通 4420842
什么是DOI,文献DOI怎么找? 2428496
邀请新用户注册赠送积分活动 1421139
关于科研通互助平台的介绍 1400326