Semi-Supervised Deep Transfer Learning for Benign-Malignant Diagnosis of Pulmonary Nodules in Chest CT Images

人工智能 计算机科学 恶性肿瘤 深度学习 肺癌 肺孤立结节 模式识别(心理学) 放射科 学习迁移 医学 结核(地质) 计算机断层摄影术 病理 内科学 古生物学 生物
作者
Feng Shi,Bojiang Chen,Qiqi Cao,Ying Wei,Qing Zhou,Rui Zhang,Yaojie Zhou,Wenjie Yang,Xiang Wang,Rongrong Fan,Fan Yang,Yanbo Chen,Weimin Li,Yaozong Gao,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (4): 771-781 被引量:50
标识
DOI:10.1109/tmi.2021.3123572
摘要

Lung cancer is the leading cause of cancer deaths worldwide. Accurately diagnosing the malignancy of suspected lung nodules is of paramount clinical importance. However, to date, the pathologically-proven lung nodule dataset is largely limited and is highly imbalanced in benign and malignant distributions. In this study, we proposed a Semi-supervised Deep Transfer Learning (SDTL) framework for benign-malignant pulmonary nodule diagnosis. First, we utilize a transfer learning strategy by adopting a pre-trained classification network that is used to differentiate pulmonary nodules from nodule-like tissues. Second, since the size of samples with pathological-proven is small, an iterated feature-matching-based semi-supervised method is proposed to take advantage of a large available dataset with no pathological results. Specifically, a similarity metric function is adopted in the network semantic representation space for gradually including a small subset of samples with no pathological results to iteratively optimize the classification network. In this study, a total of 3,038 pulmonary nodules (from 2,853 subjects) with pathologically-proven benign or malignant labels and 14,735 unlabeled nodules (from 4,391 subjects) were retrospectively collected. Experimental results demonstrate that our proposed SDTL framework achieves superior diagnosis performance, with accuracy = 88.3%, AUC = 91.0% in the main dataset, and accuracy = 74.5%, AUC = 79.5% in the independent testing dataset. Furthermore, ablation study shows that the use of transfer learning provides 2% accuracy improvement, and the use of semi-supervised learning further contributes 2.9% accuracy improvement. Results implicate that our proposed classification network could provide an effective diagnostic tool for suspected lung nodules, and might have a promising application in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助xuhaohao采纳,获得10
刚刚
好运锦鲤完成签到 ,获得积分10
1秒前
1秒前
闲听花落发布了新的文献求助10
1秒前
称心语风完成签到,获得积分20
1秒前
无花果应助byumi采纳,获得10
2秒前
FashionBoy应助我没有名字采纳,获得20
2秒前
维生素完成签到 ,获得积分10
3秒前
3秒前
4秒前
6秒前
7秒前
丸子发布了新的文献求助10
7秒前
赘婿应助赢赢采纳,获得10
7秒前
李健应助homeworkk采纳,获得10
9秒前
奔跑吧,傻苗苗完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
Singularity发布了新的文献求助10
12秒前
科研通AI2S应助林哥哥采纳,获得10
12秒前
13秒前
我是老大应助韩凡采纳,获得10
14秒前
无聊又夏完成签到,获得积分10
14秒前
淡然尔蝶完成签到,获得积分10
15秒前
15秒前
liwei发布了新的文献求助10
16秒前
16秒前
田様应助步步采纳,获得10
16秒前
17秒前
17秒前
18秒前
pluto应助迷人凉面采纳,获得10
18秒前
青春梦发布了新的文献求助10
19秒前
21秒前
957发布了新的文献求助10
21秒前
21秒前
21秒前
杨纯宇完成签到,获得积分20
21秒前
赘婿应助科研通管家采纳,获得10
22秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125274
求助须知:如何正确求助?哪些是违规求助? 2775580
关于积分的说明 7727081
捐赠科研通 2431059
什么是DOI,文献DOI怎么找? 1291657
科研通“疑难数据库(出版商)”最低求助积分说明 622216
版权声明 600368