Semi-Supervised Deep Transfer Learning for Benign-Malignant Diagnosis of Pulmonary Nodules in Chest CT Images

人工智能 计算机科学 恶性肿瘤 深度学习 肺癌 肺孤立结节 模式识别(心理学) 放射科 学习迁移 医学 结核(地质) 计算机断层摄影术 病理 内科学 古生物学 生物
作者
Feng Shi,Bojiang Chen,Qiqi Cao,Ying Wei,Qing Zhou,Rui Zhang,Yaojie Zhou,Wenjie Yang,Xiang Wang,Rongrong Fan,Fan Yang,Yanbo Chen,Weimin Li,Yaozong Gao,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (4): 771-781 被引量:57
标识
DOI:10.1109/tmi.2021.3123572
摘要

Lung cancer is the leading cause of cancer deaths worldwide. Accurately diagnosing the malignancy of suspected lung nodules is of paramount clinical importance. However, to date, the pathologically-proven lung nodule dataset is largely limited and is highly imbalanced in benign and malignant distributions. In this study, we proposed a Semi-supervised Deep Transfer Learning (SDTL) framework for benign-malignant pulmonary nodule diagnosis. First, we utilize a transfer learning strategy by adopting a pre-trained classification network that is used to differentiate pulmonary nodules from nodule-like tissues. Second, since the size of samples with pathological-proven is small, an iterated feature-matching-based semi-supervised method is proposed to take advantage of a large available dataset with no pathological results. Specifically, a similarity metric function is adopted in the network semantic representation space for gradually including a small subset of samples with no pathological results to iteratively optimize the classification network. In this study, a total of 3,038 pulmonary nodules (from 2,853 subjects) with pathologically-proven benign or malignant labels and 14,735 unlabeled nodules (from 4,391 subjects) were retrospectively collected. Experimental results demonstrate that our proposed SDTL framework achieves superior diagnosis performance, with accuracy = 88.3%, AUC = 91.0% in the main dataset, and accuracy = 74.5%, AUC = 79.5% in the independent testing dataset. Furthermore, ablation study shows that the use of transfer learning provides 2% accuracy improvement, and the use of semi-supervised learning further contributes 2.9% accuracy improvement. Results implicate that our proposed classification network could provide an effective diagnostic tool for suspected lung nodules, and might have a promising application in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助艺玲采纳,获得10
1秒前
longtengfei发布了新的文献求助10
1秒前
2秒前
2秒前
ZL发布了新的文献求助10
4秒前
luca发布了新的文献求助10
4秒前
ruby发布了新的文献求助10
4秒前
沉静的颦发布了新的文献求助10
5秒前
5秒前
cjy完成签到,获得积分10
5秒前
5秒前
6秒前
Zoe完成签到,获得积分10
6秒前
6秒前
6秒前
任性完成签到,获得积分10
6秒前
an发布了新的文献求助10
7秒前
7秒前
领导范儿应助袅袅采纳,获得10
7秒前
若狂完成签到,获得积分10
7秒前
Gyy完成签到,获得积分10
8秒前
8秒前
8秒前
上官若男应助hu970采纳,获得10
8秒前
9秒前
妮儿发布了新的文献求助10
10秒前
10秒前
Aile。完成签到,获得积分10
10秒前
10秒前
霹雳游侠完成签到,获得积分10
11秒前
hjj发布了新的文献求助10
13秒前
gg完成签到,获得积分10
13秒前
狂野觅云发布了新的文献求助10
13秒前
坚强的广山应助iRan采纳,获得200
13秒前
13秒前
余姚发布了新的文献求助10
13秒前
13秒前
13秒前
哈哈发布了新的文献求助10
13秒前
洛尚发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759