Semi-Supervised Deep Transfer Learning for Benign-Malignant Diagnosis of Pulmonary Nodules in Chest CT Images

人工智能 计算机科学 恶性肿瘤 深度学习 肺癌 肺孤立结节 模式识别(心理学) 放射科 学习迁移 医学 结核(地质) 计算机断层摄影术 病理 内科学 生物 古生物学
作者
Feng Shi,Bojiang Chen,Qiqi Cao,Ying Wei,Qing Zhou,Rui Zhang,Yaojie Zhou,Wenjie Yang,Xiang Wang,Rongrong Fan,Fan Yang,Yanbo Chen,Weimin Li,Yaozong Gao,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (4): 771-781 被引量:59
标识
DOI:10.1109/tmi.2021.3123572
摘要

Lung cancer is the leading cause of cancer deaths worldwide. Accurately diagnosing the malignancy of suspected lung nodules is of paramount clinical importance. However, to date, the pathologically-proven lung nodule dataset is largely limited and is highly imbalanced in benign and malignant distributions. In this study, we proposed a Semi-supervised Deep Transfer Learning (SDTL) framework for benign-malignant pulmonary nodule diagnosis. First, we utilize a transfer learning strategy by adopting a pre-trained classification network that is used to differentiate pulmonary nodules from nodule-like tissues. Second, since the size of samples with pathological-proven is small, an iterated feature-matching-based semi-supervised method is proposed to take advantage of a large available dataset with no pathological results. Specifically, a similarity metric function is adopted in the network semantic representation space for gradually including a small subset of samples with no pathological results to iteratively optimize the classification network. In this study, a total of 3,038 pulmonary nodules (from 2,853 subjects) with pathologically-proven benign or malignant labels and 14,735 unlabeled nodules (from 4,391 subjects) were retrospectively collected. Experimental results demonstrate that our proposed SDTL framework achieves superior diagnosis performance, with accuracy = 88.3%, AUC = 91.0% in the main dataset, and accuracy = 74.5%, AUC = 79.5% in the independent testing dataset. Furthermore, ablation study shows that the use of transfer learning provides 2% accuracy improvement, and the use of semi-supervised learning further contributes 2.9% accuracy improvement. Results implicate that our proposed classification network could provide an effective diagnostic tool for suspected lung nodules, and might have a promising application in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Catalysis123发布了新的文献求助30
刚刚
xzn1123完成签到,获得积分0
1秒前
njc大魔王完成签到,获得积分10
1秒前
超级的嘉儿关注了科研通微信公众号
1秒前
高荣欣发布了新的文献求助10
1秒前
稚生w发布了新的文献求助10
1秒前
2秒前
77完成签到,获得积分20
2秒前
2秒前
科研通AI6应助榴莲柿子茶采纳,获得10
3秒前
科研通AI5应助榴莲柿子茶采纳,获得10
3秒前
3秒前
矮小的念双完成签到 ,获得积分20
3秒前
科研通AI6应助Gatsby采纳,获得10
3秒前
3秒前
3秒前
哦啊啊完成签到 ,获得积分10
4秒前
ggbond发布了新的文献求助10
4秒前
4秒前
科研通AI6应助vv采纳,获得10
4秒前
奋斗的向雪完成签到,获得积分10
4秒前
热心市民余先生完成签到,获得积分10
4秒前
情怀应助吱吱采纳,获得10
4秒前
orixero应助果子采纳,获得10
5秒前
於成协完成签到,获得积分10
5秒前
小许完成签到 ,获得积分10
6秒前
月牙儿完成签到,获得积分10
6秒前
小王同学完成签到,获得积分10
6秒前
6秒前
我是你爹完成签到,获得积分10
6秒前
裴荣华完成签到,获得积分10
6秒前
FYP发布了新的文献求助10
6秒前
wangye发布了新的文献求助10
6秒前
lililiiii完成签到,获得积分10
6秒前
天暗星完成签到,获得积分10
7秒前
双shuang完成签到,获得积分10
7秒前
7秒前
每天都困发布了新的文献求助10
7秒前
7秒前
sonia完成签到,获得积分10
7秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Oxford Learner's Pocket Word Skills 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5151967
求助须知:如何正确求助?哪些是违规求助? 4347586
关于积分的说明 13537453
捐赠科研通 4190264
什么是DOI,文献DOI怎么找? 2298014
邀请新用户注册赠送积分活动 1298303
关于科研通互助平台的介绍 1243075