Validating the efficiency of γ-Al2O3/La0.6Sr0.4Co0.2Fe0.8O3-δ double-layer electrolyte for low temperature solid oxide fuel cell

电解质 材料科学 氧化物 固体氧化物燃料电池 离子电导率 化学工程 阴极 图层(电子) 钙钛矿(结构) 电导率 纳米技术 电极 化学 冶金 物理化学 工程类
作者
Xiaomi Zhou,Dan Zheng,Xia Chen,Xunying Wang,Wenjing Dong,Bin Zhu,Baoyuan Wang
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:46 (80): 40014-40021 被引量:1
标识
DOI:10.1016/j.ijhydene.2021.09.255
摘要

Perovskite La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3+δ (LSCF) as a promising cathode material possessed overwhelming electronic conduction along with certain ionic conductivity. Its strong electron conduction capability hinder the application of pure-phase LSCF as electrolyte in semiconductor membrane fuel cell (SMFC). In order to constrain the electron transport and take advantage of the decent ion conduction of LSCF, a thin layer of γ-Al 2 O 3 with insulating property was added as an electron barrier layer and combine with LSCF to form a two-layer structure electrolyte. Through adjusting the weight ratio of LSCF/γ-Al 2 O 3 to optimize the thickness of double layers, an open circuit voltage of 0.98 V and a maximum power density of 690 mW/cm 2 was received at 550 °C. At the same time, SEM, EIS and other characterization technology had proven that the LSCF/γ-Al 2 O 3 bi-layer electrolyte can work efficiently at low temperature. The advantage of this work is the application of double-layer (γ-Al 2 O 3 /LSCF) structure electrolyte to instead of mixed material electrolyte in low-temperature solid oxide fuel cells. Structural innovation and the using of insulating materials provided clues for the further development of SMFC. • This work proposes new bi-layer electrolyte in low-temperature solid oxide fuel cell. • Wide band gap oxide γ-Al 2 O 3 is used as an electron barrier layer. • The short-circuit phenomenon of LSCF as an electrolyte in low-temperature solid oxide fuel cells has been improved. • The device avoids high temperature sintering and can still obtain good performance. • The lower operating temperature eliminates the thermal matching between the bi-layer electrolyte.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助BLUE采纳,获得20
1秒前
2秒前
暴躁四叔应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
FIN应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
2秒前
ding应助科研通管家采纳,获得10
2秒前
guo应助科研通管家采纳,获得10
2秒前
无餍应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
成就难摧完成签到 ,获得积分10
3秒前
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
3秒前
FIN应助科研通管家采纳,获得10
3秒前
无餍应助科研通管家采纳,获得10
3秒前
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
ivynne应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
3秒前
CipherSage应助123采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
4秒前
Orange应助科研通管家采纳,获得30
4秒前
SYLH应助科研通管家采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
FIN应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
奇异物质完成签到,获得积分10
5秒前
5秒前
5秒前
大方听云发布了新的文献求助10
6秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461359
求助须知:如何正确求助?哪些是违规求助? 3055047
关于积分的说明 9046247
捐赠科研通 2744983
什么是DOI,文献DOI怎么找? 1505792
科研通“疑难数据库(出版商)”最低求助积分说明 695820
邀请新用户注册赠送积分活动 695264