Rescue therapy for vasospasm following aneurysmal subarachnoid hemorrhage: a propensity score–matched analysis with machine learning

医学 倾向得分匹配 蛛网膜下腔出血 血管痉挛 格拉斯哥结局量表 观察研究 抢救疗法 脑血管痉挛 动脉瘤 随机对照试验 临床试验 内科学
作者
Michael L Martini,Sean N Neifert,William H Shuman,Emily K Chapman,Alexander J. Schupper,Eric K. Oermann,J Mocco,Michael M. Todd,James C. Torner,Andrew J. Molyneux,Stephan A. Mayer,Peter D. Le Roux,Mervyn D.I. Vergouwen,Gabriel J.E. Rinkel,George K.C. Wong,Peter J. Kirkpatrick,Audrey Quinn,Daniel Hänggi,Nima Etminan,Walter M. van den Bergh,Blessing N.R. Jaja,Michael D. Cusimano,Tom A. Schweizer,Jose I. Suarez,Hitoshi Fukuda,Sen Yamagata,Benjamin Lo,Airton Leonardo de Oliveira Manoel,Hieronymus D. Boogaarts,R Loch Macdonald
出处
期刊:Journal of Neurosurgery [American Association of Neurological Surgeons]
卷期号:136 (1): 134-147 被引量:2
标识
DOI:10.3171/2020.12.jns203778
摘要

OBJECTIVE Rescue therapies have been recommended for patients with angiographic vasospasm (aVSP) and delayed cerebral ischemia (DCI) following subarachnoid hemorrhage (SAH). However, there is little evidence from randomized clinical trials that these therapies are safe and effective. The primary aim of this study was to apply game theory–based methods in explainable machine learning (ML) and propensity score matching to determine if rescue therapy was associated with better 3-month outcomes following post-SAH aVSP and DCI. The authors also sought to use these explainable ML methods to identify patient populations that were more likely to receive rescue therapy and factors associated with better outcomes after rescue therapy. METHODS Data for patients with aVSP or DCI after SAH were obtained from 8 clinical trials and 1 observational study in the Subarachnoid Hemorrhage International Trialists repository. Gradient boosting ML models were constructed for each patient to predict the probability of receiving rescue therapy and the 3-month Glasgow Outcome Scale (GOS) score. Favorable outcome was defined as a 3-month GOS score of 4 or 5. Shapley Additive Explanation (SHAP) values were calculated for each patient-derived model to quantify feature importance and interaction effects. Variables with high SHAP importance in predicting rescue therapy administration were used in a propensity score–matched analysis of rescue therapy and 3-month GOS scores. RESULTS The authors identified 1532 patients with aVSP or DCI. Predictive, explainable ML models revealed that aneurysm characteristics and neurological complications, but not admission neurological scores, carried the highest relative importance rankings in predicting whether rescue therapy was administered. Younger age and absence of cerebral ischemia/infarction were invariably linked to better rescue outcomes, whereas the other important predictors of outcome varied by rescue type (interventional or noninterventional). In a propensity score–matched analysis guided by SHAP-based variable selection, rescue therapy was associated with higher odds of 3-month GOS scores of 4–5 (OR 1.63, 95% CI 1.22–2.17). CONCLUSIONS Rescue therapy may increase the odds of good outcome in patients with aVSP or DCI after SAH. Given the strong association between cerebral ischemia/infarction and poor outcome, trials focusing on preventative or therapeutic interventions in these patients may be most able to demonstrate improvements in clinical outcomes. Insights developed from these models may be helpful for improving patient selection and trial design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
muyi完成签到,获得积分10
刚刚
Annieqqiu完成签到 ,获得积分10
刚刚
犹豫大侠发布了新的文献求助10
刚刚
1秒前
1秒前
Raydiaz发布了新的文献求助10
1秒前
1秒前
一个左正蹬完成签到,获得积分10
1秒前
曹萍发布了新的文献求助10
2秒前
任性若云完成签到 ,获得积分10
2秒前
2秒前
小二郎应助野性的南蕾采纳,获得10
3秒前
司徒诗蕾发布了新的文献求助10
4秒前
hurricane发布了新的文献求助10
4秒前
universe发布了新的文献求助10
4秒前
雨上悲完成签到,获得积分20
5秒前
sb完成签到,获得积分10
6秒前
淡淡从阳完成签到,获得积分10
6秒前
小蘑菇应助fuuu采纳,获得10
6秒前
ouuang发布了新的文献求助10
6秒前
6秒前
星辰大海应助素直采纳,获得10
7秒前
1218发布了新的文献求助10
7秒前
8秒前
JJJ发布了新的文献求助10
8秒前
无花果应助刘昊扬采纳,获得30
9秒前
闫123完成签到,获得积分10
9秒前
NexusExplorer应助zhuo采纳,获得10
10秒前
Owen应助清脆寒香采纳,获得10
10秒前
学术疯子完成签到,获得积分10
10秒前
Rina发布了新的文献求助10
11秒前
11秒前
潇洒一曲完成签到,获得积分10
11秒前
小马甲应助雨上悲采纳,获得10
12秒前
JamesPei应助一颗好困芽采纳,获得10
13秒前
无花果应助夏儿采纳,获得30
13秒前
野性的南蕾完成签到,获得积分10
13秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911379
求助须知:如何正确求助?哪些是违规求助? 4186919
关于积分的说明 13001902
捐赠科研通 3954732
什么是DOI,文献DOI怎么找? 2168427
邀请新用户注册赠送积分活动 1186877
关于科研通互助平台的介绍 1094208