反应性(心理学)
甲烷单加氧酶
铜
催化作用
甲烷厌氧氧化
甲烷
药物化学
光化学
反应中间体
作者
Hannah M. Rhoda,Dieter Plessers,Alexander J. Heyer,Max L. Bols,Robert A. Schoonheydt,Bert F. Sels,Edward I. Solomon
摘要
Using UV-vis and resonance Raman spectroscopy, we identify a [Cu2O]2+ active site in O2 and N2O activated Cu-CHA that reacts with methane to form methanol at low temperature. The Cu-O-Cu angle (120°) is smaller than that for the [Cu2O]2+ core on Cu-MFI (140°), and its coordination geometry to the zeolite lattice is different. Site-selective kinetics obtained by operando UV-vis show that the [Cu2O]2+ core on Cu-CHA is more reactive than the [Cu2O]2+ site in Cu-MFI. From DFT calculations, we find that the increased reactivity of Cu-CHA is a direct reflection of the strong [Cu2OH]2+ bond formed along the H atom abstraction reaction coordinate. A systematic evaluation of these [Cu2O]2+ cores reveals that the higher O-H bond strength in Cu-CHA is due to the relative orientation of the two planes of the coordinating bidentate O-Al-O T-sites that connect the [Cu2O]2+ core to the zeolite lattice. This work along with our earlier study ( J. Am. Chem. Soc, 2018, 140, 9236-9243) elucidates how zeolite lattice constraints can influence active site reactivity.
科研通智能强力驱动
Strongly Powered by AbleSci AI