Intelligent video anomaly detection and classification using faster RCNN with deep reinforcement learning model

卷积神经网络 模式识别(心理学) 目标检测 特征(语言学) 特征提取 人工神经网络
作者
Romany F. Mansour,José Escorcia-Gutierrez,Margarita Gamarra,Jair A. Villanueva,Nallig Leal
出处
期刊:Image and Vision Computing [Elsevier]
卷期号:112: 104229- 被引量:4
标识
DOI:10.1016/j.imavis.2021.104229
摘要

Abstract Recently, intelligent video surveillance applications have become essential in public security by the use of computer vision technologies to investigate and understand long video streams. Anomaly detection and classification are considered a major element of intelligent video surveillance. The aim of anomaly detection is to automatically determine the existence of abnormalities in a short time period. Deep reinforcement learning (DRL) techniques can be employed for anomaly detection, which integrates the concepts of reinforcement learning and deep learning enabling the artificial agents in learning the knowledge and experience from actual data directly. With this motivation, this paper presents an Intelligent Video Anomaly Detection and Classification using Faster RCNN with Deep Reinforcement Learning Model, called IVADC-FDRL model. The presented IVADC-FDRL model operates on two major stages namely anomaly detection and classification. Firstly, Faster RCNN model is applied as an object detector with Residual Network as a baseline model, which detects the anomalies as objects. Besides, deep Q-learning (DQL) based DRL model is employed for the classification of detected anomalies. In order to validate the effective anomaly detection and classification performance of the IVADC-FDRL model, an extensive set of experimentations were carried out on the benchmark UCSD anomaly dataset. The experimental results showcased the better performance of the IVADC-FDRL model over the other compared methods with the maximum accuracy of 98.50% and 94.80% on the applied Test004 and Test007 dataset respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
paul关注了科研通微信公众号
5秒前
La-crazy应助callmecjh采纳,获得10
6秒前
6秒前
荼柒完成签到,获得积分10
7秒前
FashionBoy应助sssssssssss采纳,获得10
7秒前
Ma发布了新的文献求助50
8秒前
请叫我风吹麦浪应助jiao采纳,获得10
10秒前
摸鱼划水完成签到 ,获得积分10
11秒前
李思发布了新的文献求助10
11秒前
小鱼发布了新的文献求助10
13秒前
13秒前
15秒前
16秒前
陈陈陈发布了新的文献求助10
16秒前
荼柒完成签到,获得积分10
17秒前
霸气的思柔完成签到,获得积分10
18秒前
怕黑修杰完成签到 ,获得积分10
19秒前
xy完成签到,获得积分10
19秒前
烟花应助科研通管家采纳,获得10
21秒前
huhuhu应助科研通管家采纳,获得10
21秒前
田様应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
4399com应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
Ava应助乔治采纳,获得10
22秒前
ablexm发布了新的文献求助10
22秒前
Elaine发布了新的文献求助10
22秒前
25秒前
南宫冰夏完成签到,获得积分10
25秒前
26秒前
我是老大应助L112233采纳,获得10
27秒前
若尘发布了新的文献求助10
28秒前
丘比特应助ablexm采纳,获得10
29秒前
荼柒完成签到,获得积分10
30秒前
30秒前
30秒前
小艾发布了新的文献求助30
31秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309767
求助须知:如何正确求助?哪些是违规求助? 2943014
关于积分的说明 8512004
捐赠科研通 2618059
什么是DOI,文献DOI怎么找? 1430795
科研通“疑难数据库(出版商)”最低求助积分说明 664310
邀请新用户注册赠送积分活动 649468