软骨细胞
细胞生物学
间充质干细胞
氮氧化物4
细胞凋亡
微泡
活性氧
化学
外体
小RNA
NADPH氧化酶
生物
体外
生物化学
基因
作者
Xiang Li,Yuanyuan Wang,Zhuyun Cai,Qi Zhou,Lexiang Li,Peiliang Fu
摘要
Cyclic strain-induced chondrocyte damage is actively involved in the pathogenesis of osteoarthritis and arthritis. MicroRNAs (miRNAs) carried by exosomes have been implicated in various diseases. However, the role of miR-100-5p in cyclic strain-induced chondrocyte damage remains to be elucidated. miR-100-5p and NADPH oxidase 4 (NOX4) were silenced or overexpressed in human primary articular chondrocytes. PKH-67 Dye was used to trace exosome endocytosis. Reactive oxygen species (ROS) production was monitored using DCFH-DA. Cell apoptosis was measured using a flow cytometer. Quantitative RT-PCR and Western blots were used to evaluate gene expression. Cyclic strain promoted ROS production and apoptosis in primary articular chondrocytes in a time-dependent manner. HucMSCs-derived exosomal miR-100-5p inhibited cyclic strain-induced ROS production and apoptosis in primary articular chondrocytes. miR-100-5p directly targeted NOX4. Overexpressing NOX4 attenuated hucMSCs-derived exosomes-mediated protective effects in primary articular chondrocytes. Cyclic strain promotes ROS production and apoptosis in primary articular chondrocytes, which was abolished by hucMSCs-derived exosomal miR-100-5p through its target NOX4. The findings highlight the importance of miR-100-5p/NOX4 axis in primary articular chondrocytes injury and provide new insights into therapeutic strategies for articular chondrocytes injury and osteoarthritis.
科研通智能强力驱动
Strongly Powered by AbleSci AI