计算机科学
可视化
自然语言
管道(软件)
数据可视化
表(数据库)
代表(政治)
自然语言处理
人工智能
任务(项目管理)
信息可视化
情报检索
自然语言理解
数据挖掘
程序设计语言
经济
管理
法学
政治
政治学
作者
Can Liu,Yun Han,Ruike Jiang,Xiaoru Yuan
标识
DOI:10.1109/pacificvis52677.2021.00010
摘要
We propose an automatic pipeline to generate visualization with annotations to answer natural-language questions raised by the public on tabular data. With a pre-trained language representation model, the input natural language questions and table headers are first encoded into vectors. According to these vectors, a multi-task end-to-end deep neural network extracts related data areas and corresponding aggregation type. We present the result with carefully designed visualization and annotations for different attribute types and tasks. We conducted a comparison experiment with state-of-the-art works and the best commercial tools. The results show that our method outperforms those works with higher accuracy and more effective visualization.
科研通智能强力驱动
Strongly Powered by AbleSci AI