Learning for Constrained Optimization: Identifying Optimal Active Constraint Sets

数学优化 计算机科学 主动学习(机器学习) 约束(计算机辅助设计) 过程(计算) 最优化问题 算法 数学 人工智能 几何学 操作系统
作者
Sidhant Misra,Line Roald,Yeesian Ng
出处
期刊:Informs Journal on Computing 卷期号:34 (1): 463-480 被引量:32
标识
DOI:10.1287/ijoc.2020.1037
摘要

In many engineered systems, optimization is used for decision making at time scales ranging from real-time operation to long-term planning. This process often involves solving similar optimization problems over and over again with slightly modified input parameters, often under tight latency requirements. We consider the problem of using the information available through this repeated solution process to learn important characteristics of the optimal solution as a function of the input parameters. Our proposed method is based on learning relevant sets of active constraints, from which the optimal solution can be obtained efficiently. Using active sets as features preserves information about the physics of the system, enables interpretable results, accounts for relevant safety constraints, and is easy to represent and encode. However, the total number of active sets is also very large, as it grows exponentially with system size. The key contribution of this paper is a streaming algorithm that learns the relevant active sets from training samples consisting of the input parameters and the corresponding optimal solution, without any restrictions on the problem type, problem structure or probability distribution of the input parameters. The algorithm comes with theoretical performance guarantees and is shown to converge fast for problem instances with a small number of relevant active sets. It can thus be used to establish simultaneously learn the relevant active sets and the practicability of the learning method. Through case studies in optimal power flow, supply chain planning, and shortest path routing, we demonstrate that often only a few active sets are relevant in practice, suggesting that active sets provide an appropriate level of abstraction for a learning algorithm to target.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
呱呱呱发布了新的文献求助10
3秒前
Coffee完成签到 ,获得积分10
3秒前
swy发布了新的文献求助10
3秒前
3秒前
4秒前
ONESTUD应助繁荣的问玉采纳,获得50
4秒前
passionate完成签到,获得积分10
5秒前
别让我误会完成签到 ,获得积分10
5秒前
heylin关注了科研通微信公众号
6秒前
MFNM完成签到,获得积分10
7秒前
x421发布了新的文献求助10
8秒前
关琦完成签到,获得积分10
8秒前
炙热觅松发布了新的文献求助10
8秒前
Dr.发布了新的文献求助10
8秒前
jeep先生完成签到,获得积分10
9秒前
希望天下0贩的0应助cc采纳,获得30
9秒前
李爱国应助恋空采纳,获得10
10秒前
赘婿应助Tsuki采纳,获得10
10秒前
完美采梦完成签到 ,获得积分10
11秒前
fbh1完成签到,获得积分10
13秒前
x421完成签到,获得积分10
15秒前
明理的南风应助jbear采纳,获得10
15秒前
leezz完成签到,获得积分10
16秒前
炙热觅松完成签到,获得积分10
16秒前
苏苏完成签到,获得积分10
17秒前
17秒前
18秒前
林一完成签到,获得积分10
18秒前
韭菜完成签到,获得积分20
20秒前
恋空发布了新的文献求助10
21秒前
22秒前
Dr.发布了新的文献求助30
22秒前
24秒前
动听的笑南完成签到,获得积分10
24秒前
畅快的道之完成签到,获得积分10
25秒前
科研通AI2S应助dhjic采纳,获得10
25秒前
舒服的灵安完成签到 ,获得积分10
26秒前
cc完成签到,获得积分10
27秒前
午后狂睡完成签到 ,获得积分10
28秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3085527
求助须知:如何正确求助?哪些是违规求助? 2738431
关于积分的说明 7549700
捐赠科研通 2388188
什么是DOI,文献DOI怎么找? 1266339
科研通“疑难数据库(出版商)”最低求助积分说明 613430
版权声明 598591