Growth Mechanisms and Morphology Engineering of Atomic Layer-Deposited WS2

材料科学 原子层沉积 成核 纳米技术 光电子学 薄脆饼 纳米线 透射电子显微镜 晶体管 纳米片 薄膜 电压 量子力学 物理 有机化学 化学
作者
Hanjie Yang,Yang Wang,Xingli Zou,Rongxu Bai,Sheng Han,Zecheng Wu,Qi Han,Yu Zhang,Hao Zhu,Lin Chen,Xionggang Lu,Qingqing Sun,Jack C. Lee,Edward T. Yu,Deji Akinwande,Ji Li
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:13 (36): 43115-43122 被引量:14
标识
DOI:10.1021/acsami.1c13467
摘要

Transition-metal dichalcogenides (TMDs) have attracted intense research interest for a broad range of device applications. Atomic layer deposition (ALD), a CMOS compatible technique, can enable the preparation of high-quality TMD films on 8 to 12 in. wafers for large-scale circuit integration. However, the ALD growth mechanisms are still not fully understood. In this work, we systematically investigated the growth mechanisms for WS2 and found them to be strongly affected by nucleation density and film thickness. Transmission electron microscope imaging reveals the coexistence and competition of lateral and vertical growth mechanisms at different growth stages, and the critical thicknesses for each mechanism are obtained. The in-plane lateral growth mode dominates when the film thickness remains less than 5.6 nm (8 layers), while the vertical growth mode dominates when the thickness is greater than 20 nm. From the resulting understanding of these growth mechanisms, the conditions for film deposition were optimized and a maximum grain size of 108 nm was achieved. WS2-based field-effect transistors were fabricated with electron mobility and on/off current ratio up to 3.21 cm2 V–1 s–1 and 105, respectively. Particularly, this work proves the capability of synthesis of TMD films in a wafer scale with excellent controllability of thickness and morphology, enabling many potential applications other than transistors, such as nanowire- or nanosheet-based supercapacitors, batteries, sensors, and catalysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超级的仇天完成签到,获得积分10
2秒前
迪小姐发布了新的文献求助10
3秒前
shuanglin发布了新的文献求助10
3秒前
123发布了新的文献求助30
5秒前
木木发布了新的文献求助10
5秒前
5秒前
8秒前
彭于晏应助刘十九采纳,获得20
9秒前
香蕉觅云应助路茉采纳,获得10
9秒前
阿鑫发布了新的文献求助10
11秒前
dddz发布了新的文献求助10
13秒前
Owen应助嗯嗯采纳,获得10
14秒前
15秒前
16秒前
热情的蜗牛完成签到 ,获得积分10
17秒前
Jasper应助123采纳,获得10
19秒前
酷波er应助哈哈采纳,获得30
19秒前
俊杰完成签到,获得积分20
20秒前
orixero应助hhl采纳,获得10
20秒前
kibddd应助jojojojojo采纳,获得10
20秒前
20秒前
20秒前
风落完成签到 ,获得积分10
21秒前
zhu发布了新的文献求助10
23秒前
寻道图强应助干净尔芙采纳,获得30
26秒前
CipherSage应助大麦迪采纳,获得10
26秒前
26秒前
嘟嘟嘟完成签到 ,获得积分10
26秒前
27秒前
27秒前
27秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
Akim应助科研通管家采纳,获得10
28秒前
深情安青应助科研通管家采纳,获得10
28秒前
28秒前
情怀应助科研通管家采纳,获得10
28秒前
乐乐应助科研通管家采纳,获得10
28秒前
彳亍1117应助科研通管家采纳,获得20
28秒前
顾矜应助科研通管家采纳,获得10
28秒前
29秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
《粉体与多孔固体材料的吸附原理、方法及应用》(需要中文翻译版,化学工业出版社,陈建,周力,王奋英等译) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3083756
求助须知:如何正确求助?哪些是违规求助? 2737102
关于积分的说明 7543295
捐赠科研通 2386458
什么是DOI,文献DOI怎么找? 1265484
科研通“疑难数据库(出版商)”最低求助积分说明 613100
版权声明 597951