Recent Advances in Computer-Aided Medical Diagnosis Using Machine Learning Algorithms With Optimization Techniques

机器学习 人工智能 计算机科学 特征选择 粒子群优化 领域(数学) 超启发式 在线机器学习 特征工程 算法 无监督学习 深度学习 机器人学习 机器人 数学 移动机器人 纯数学
作者
Taki Hasan Rafi,Raed M. Shubair,Faisal Farhan,Md. Ziaul Hoque,Farhan Mohd Quayyum
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 137847-137868 被引量:4
标识
DOI:10.1109/access.2021.3108892
摘要

Artificial intelligence is a spectacular part of computer engineering that has earned a compelling diversion in the field of medical data classification due to its state-of-art algorithmic strength and learning capabilities. Machine Learning is a major sub-domain of artificial intelligence, where it has become one of most promising fields in computer science. In recent years, there is a large spectrum of healthcare and biomedical data has been growing intensely. Due to the huge labeled or unlabeled data, it is important to have a compact and robust machine learning solution for classification. Several optimizers have been deployed to improve the inclusive performance of machine learning models. The classification of machine learning models depend on several factors. This comprehensive review paper aims to insight the current stage of optimized machine learning success on medical data classification. Increasing number of unstructured medical data has been utilizing in machine learning algorithms to predict intuitions. But it is difficult to inherent immense intuition from those data. So machine learning researchers have utilized state-of-art optimizers and novel feature selection techniques to overcome and emend the performance accuracy. We have highlighted some recent literatures, which exhibits the robust impact of optimizers and feature selection on machine learning techniques on medical data characterization. On the other hand, a clean-cut introduction on machine learning and theoretical outlook of widely utilized optimization techniques like genetic algorithm, gray wolf optimization, and particle swarm optimization are discussed for initial understanding to the optimization techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
wtqaaaa发布了新的文献求助10
1秒前
无花果应助麦兜2001采纳,获得10
1秒前
南街初晴发布了新的文献求助10
4秒前
4秒前
方方发布了新的文献求助10
5秒前
5秒前
小蘑菇应助ML采纳,获得10
6秒前
7秒前
forgman95*完成签到,获得积分10
7秒前
熊一只发布了新的文献求助10
7秒前
香蕉茹妖完成签到,获得积分10
8秒前
充电宝应助哈哈哈采纳,获得10
8秒前
乐乐应助天色青青采纳,获得10
9秒前
jdj发布了新的文献求助50
9秒前
NexusExplorer应助念初采纳,获得10
10秒前
在水一方应助诸忆雪采纳,获得10
11秒前
11秒前
平淡应助Tiam采纳,获得10
11秒前
12秒前
12秒前
hcl完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
赘婿应助DDL采纳,获得10
14秒前
16秒前
wanci应助苹果白凡采纳,获得10
16秒前
留猪发布了新的文献求助10
17秒前
努力考博发布了新的文献求助30
17秒前
麦兜2001发布了新的文献求助10
17秒前
17秒前
17秒前
小马甲应助Shantx采纳,获得30
18秒前
可靠草丛发布了新的文献求助10
19秒前
19秒前
kirin发布了新的文献求助10
20秒前
wang完成签到 ,获得积分10
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466496
求助须知:如何正确求助?哪些是违规求助? 3059287
关于积分的说明 9065817
捐赠科研通 2749768
什么是DOI,文献DOI怎么找? 1508697
科研通“疑难数据库(出版商)”最低求助积分说明 697013
邀请新用户注册赠送积分活动 696804