荧光
检出限
化学
胶体金
纳米颗粒
猝灭(荧光)
分析化学(期刊)
色谱法
荧光光谱法
材料科学
纳米技术
光学
物理
作者
Zexiang Wang,Keyu Xing,Nengshui Ding,Suhua Wang,Ganggang Zhang,Weihua Lai
标识
DOI:10.1016/j.jhazmat.2021.127204
摘要
Herein, we propose a lateral flow immunoassay (LFIA) based on the dual spectral-overlapped fluorescence quenching of polydopamine nanospheres (PDANs) caused by the inner filter effect to sensitively detect sulfamethazine (SMZ). The fluorescence quenching LFIA device consists of four parts: absorbent pad, polyvinyl chloride pad, sample pad, and nitrocellulose membrane. Compared with traditional quenchers such as gold nanoparticles (AuNPs) with single spectral-overlapped quenching ability, PDANs can quench the excitation light and emission light of three fluorescence donors (aggregation-induced emission fluorescent microsphere, AIEFM; fluorescent microsphere, FM; and quantum dot bead, QB). The fluorescence intensity changes (ΔF) are numerically larger for PDANs-LFIA (ΔFAIEFM = 2315, ΔFFM = 979, ΔFQB = 910) than those for AuNPs-LFIA (ΔFAIEFM = 1722, ΔFFM = 833, ΔFQB =;520). AIEFM-based PDANs-LFIA exhibits a large ΔF (2315) in response to the changes in the SMZ concentration, and produces a high signal-to-noise ratio. The limit of detection (LOD) and visual LOD of LFIA based on PDANs quenching AIEFM for the detection of SMZ in chicken are 0.043 and 0.5 ng/mL, respectively. The results confirm that the proposed method can be used for the detection of hazardous materials in practical applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI