Insights into the mechanics of solid conical microneedle array insertion into skin using the finite element method

微尺度化学 材料科学 渗透(战争) 有限元法 锥面 超弹性材料 复合材料 生物医学工程 穿透深度 结构工程 光学 工程类 数学教育 数学 物理 医学 运筹学
作者
Wenting Shu,Helen Heimark,Nicky Bertollo,Desmond J. Tobin,Eoin D. O’Cearbhaill,Aisling Ní Annaidh
出处
期刊:Acta Biomaterialia [Elsevier]
卷期号:135: 403-413 被引量:46
标识
DOI:10.1016/j.actbio.2021.08.045
摘要

In order to develop optimum microneedle designs, researchers must first develop robust, repeatable and adaptable test methods which are representative of in vivo conditions. However, there is a lack of experimental tools which can accurately comparatively interrogate functional microneedle penetration of tissue. In this study, we seek to develop a state of the art finite element model of microneedle insertion into and penetration of human skin. The developed model employs a 3D hyperelastic, anisotropic pre-stressed multi-layered material which more accurately reflects in vivo skin conditions, while the microneedle is modeled as an array, which can capture the influence of adjacent microneedles on the overall response. Using the developed finite element model, we highlight the importance of accurate computational modeling which can decipher the mechanics of microneedle insertion, including the influence of its position within an array and how it correlates well with experimental observations. In particular, we have concluded that, for our model microneedle array, increasing skin pretension from 0 to 10% strain reduces the penetration force by 13%, ultimate local deformation about the microneedle by 22% and the ultimate penetration efficiency by 15%. We have also concluded that the presence of a base plate limits the penetration efficiency by up to 24%, while the penetration efficiency across a 5 × 1 microneedle array may vary by 27%. This model elucidates, for the first time, the combined effects of skin tension and needle geometry on accurately predicting microneedle penetration efficiency. Microneedles arrays (MNAs) are medical devices with microscale protrusions, typically designed to penetrate the outermost layer of the skin, that upon optimisation, could lead to disruptive minimally-invasive disease management. However, the mechanics of MNA insertion are complex, due in part to a 'bed of nails' effect, and difficult to elucidate experimentally. Therefore, comparisons between designs, functional assessment of production batches and ultimately the likelihood of clinical translation are challenging to predict. Here, we have develop the most sophisticated in silico model of MNA insertion into pre-tensioned human skin to predict the extent of MNA penetration and therefore the likelihood of successful therapeutic delivery. Researchers can customise this model to predict the penetration efficiency of any MNA design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
皮皮桂发布了新的文献求助10
1秒前
Hello应助无奈傲菡采纳,获得10
1秒前
故意的傲玉应助FENGHUI采纳,获得10
2秒前
3秒前
科研通AI5应助nextconnie采纳,获得10
4秒前
James完成签到,获得积分10
4秒前
5秒前
Lucas应助sun采纳,获得10
6秒前
KristenStewart完成签到,获得积分10
8秒前
过时的热狗完成签到,获得积分10
8秒前
点点完成签到,获得积分10
8秒前
Zxc发布了新的文献求助10
9秒前
涨芝士完成签到 ,获得积分10
10秒前
11秒前
无名欧文关注了科研通微信公众号
11秒前
科研123完成签到,获得积分10
13秒前
crescent完成签到 ,获得积分10
15秒前
无奈傲菡发布了新的文献求助10
15秒前
烟花应助123号采纳,获得10
18秒前
超帅的遥完成签到,获得积分10
18秒前
Zxc完成签到,获得积分10
19秒前
lbt完成签到 ,获得积分10
20秒前
yao完成签到 ,获得积分10
21秒前
21秒前
23秒前
24秒前
24秒前
doudou完成签到 ,获得积分10
24秒前
BCS完成签到,获得积分10
24秒前
领导范儿应助KYN采纳,获得10
24秒前
25秒前
独特的莫言完成签到,获得积分10
27秒前
lin发布了新的文献求助10
28秒前
aero完成签到 ,获得积分10
30秒前
123号完成签到,获得积分10
32秒前
充电宝应助TT采纳,获得10
34秒前
35秒前
35秒前
英姑应助荒野星辰采纳,获得10
37秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849