亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Insights into the mechanics of solid conical microneedle array insertion into skin using the finite element method

材料科学 有限元法 锥面 固体力学 复合材料 生物医学工程 要素(刑法) 机械 结构工程 政治学 物理 工程类 法学
作者
Wenting Shu,Helen Heimark,Nicky Bertollo,Desmond J. Tobin,Eoin D. O’Cearbhaill,Aisling Ní Annaidh
出处
期刊:Acta Biomaterialia [Elsevier]
卷期号:135: 403-413 被引量:103
标识
DOI:10.1016/j.actbio.2021.08.045
摘要

In order to develop optimum microneedle designs, researchers must first develop robust, repeatable and adaptable test methods which are representative of in vivo conditions. However, there is a lack of experimental tools which can accurately comparatively interrogate functional microneedle penetration of tissue. In this study, we seek to develop a state of the art finite element model of microneedle insertion into and penetration of human skin. The developed model employs a 3D hyperelastic, anisotropic pre-stressed multi-layered material which more accurately reflects in vivo skin conditions, while the microneedle is modeled as an array, which can capture the influence of adjacent microneedles on the overall response. Using the developed finite element model, we highlight the importance of accurate computational modeling which can decipher the mechanics of microneedle insertion, including the influence of its position within an array and how it correlates well with experimental observations. In particular, we have concluded that, for our model microneedle array, increasing skin pretension from 0 to 10% strain reduces the penetration force by 13%, ultimate local deformation about the microneedle by 22% and the ultimate penetration efficiency by 15%. We have also concluded that the presence of a base plate limits the penetration efficiency by up to 24%, while the penetration efficiency across a 5 × 1 microneedle array may vary by 27%. This model elucidates, for the first time, the combined effects of skin tension and needle geometry on accurately predicting microneedle penetration efficiency. STATEMENT OF SIGNIFICANCE: Microneedles arrays (MNAs) are medical devices with microscale protrusions, typically designed to penetrate the outermost layer of the skin, that upon optimisation, could lead to disruptive minimally-invasive disease management. However, the mechanics of MNA insertion are complex, due in part to a 'bed of nails' effect, and difficult to elucidate experimentally. Therefore, comparisons between designs, functional assessment of production batches and ultimately the likelihood of clinical translation are challenging to predict. Here, we have develop the most sophisticated in silico model of MNA insertion into pre-tensioned human skin to predict the extent of MNA penetration and therefore the likelihood of successful therapeutic delivery. Researchers can customise this model to predict the penetration efficiency of any MNA design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清脆的书包关注了科研通微信公众号
1秒前
harri完成签到,获得积分10
7秒前
14秒前
美满尔蓝完成签到,获得积分10
17秒前
P_Chem完成签到,获得积分10
18秒前
socras完成签到 ,获得积分10
19秒前
20秒前
心灵美语兰完成签到 ,获得积分10
35秒前
美好灵寒完成签到 ,获得积分10
54秒前
小二郎应助科研通管家采纳,获得10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
猫猫豆包完成签到,获得积分10
1分钟前
Orange应助儒雅的冥王星采纳,获得100
1分钟前
1分钟前
笑傲完成签到,获得积分10
2分钟前
情怀应助猫猫豆包采纳,获得10
2分钟前
2分钟前
Akim应助科研通管家采纳,获得10
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
henrychen完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
6分钟前
隐形曼青应助科研小贩采纳,获得10
6分钟前
ranj完成签到,获得积分10
6分钟前
上官若男应助金水相生采纳,获得10
6分钟前
7分钟前
调皮千兰发布了新的文献求助10
7分钟前
7分钟前
7分钟前
7分钟前
7分钟前
sujiaoziemo完成签到,获得积分10
7分钟前
zzw18512467916完成签到,获得积分10
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658010
求助须知:如何正确求助?哪些是违规求助? 4816219
关于积分的说明 15080820
捐赠科研通 4816310
什么是DOI,文献DOI怎么找? 2577281
邀请新用户注册赠送积分活动 1532293
关于科研通互助平台的介绍 1490899