Prediction of InSAR deformation time-series using a long short-term memory neural network

干涉合成孔径雷达 人工神经网络 计算机科学 系列(地层学) 时间序列 合成孔径雷达 循环神经网络 遥感 感知器 大地测量学 人工智能 地质学 机器学习 古生物学
作者
Yi Chen,Yi He,Lifeng Zhang,Youdong Chen,Hongyu Pu,Baoshan Chen,Liya Gao
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:42 (18): 6919-6942 被引量:68
标识
DOI:10.1080/01431161.2021.1947540
摘要

The prediction of land subsidence is a crucial step for early warning of urban infrastructure damage and timely remedy. However, the performance of most mathematical and empirical prediction models is often compromised by their large number of parameters, complex operational processes and sparsely measured values. Currently, the traditional neural network models are popular and effective, but they cannot accurately discover the characteristic changes of time series data. In this paper, a long short-term memory (LSTM) neural network was proposed to predict the land subsidence of time series Interferometric Synthetic Aperture Radar (InSAR). First, the Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) technique was utilized to monitor the time series land subsidence at Beijing Capital International Airport (BCIA) from 2005 to 2010 based on ENVISAT ASAR images with a descending orbit. The results were compared with the existing results to verify the reliability and then used to analyse the temporal and spatial characteristics of the time series land subsidence of the BCIA. Based on the time series InSAR deformation data, the LSTM neural network was used to establish the prediction model of time series InSAR, and the results were compared with those of the Multi-Layer Perceptron (MLP) and Recurrent Neural Network (RNN). The comparison results showed that the LSTM neural network was more accurate than the MLP and RNN on the point scale (the root mean square error was 4.60 mm and the mean absolute error was 3.18 mm), the correlation coefficients between the prediction results of the LSTM neural network and the real InSAR measurement results in 2007 and 2008 were 0.93 mm and 0.96 mm, respectively, indicating that LSTM neural network had better prediction performance. Eventually, based on the land subsidence data of time series InSAR from 2006 to 2010, the LSTM neural network was applied to predict the BCIA time series land subsidence in 2011. The results predicted that cumulative subsidence in September 2011 would reach a maximum of 350 mm. Therefore, the LSTM neural network is a potentially effective prediction method, which can replace numerical or empirical models in the absence of detailed hydrogeological data. Moreover, its prediction results can be used to assist decision-making, early warning and hazard relief.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文艺的懿完成签到,获得积分10
刚刚
Nathan完成签到,获得积分10
刚刚
MichaelQin完成签到,获得积分10
1秒前
冷艳的白莲完成签到,获得积分10
1秒前
zheng驳回了慕青应助
1秒前
公硕完成签到 ,获得积分10
1秒前
化学位移值完成签到 ,获得积分10
2秒前
2秒前
千里江山一只蝇完成签到,获得积分10
2秒前
嘿小黑完成签到,获得积分10
2秒前
峥2发布了新的文献求助10
2秒前
刘雯完成签到,获得积分10
2秒前
肖永轩完成签到,获得积分10
2秒前
寒冷的凝旋完成签到,获得积分10
2秒前
3秒前
量子星尘发布了新的文献求助10
5秒前
自然乌龟发布了新的文献求助10
5秒前
寒hep发布了新的文献求助10
5秒前
6秒前
wdy111应助莉莉卡i采纳,获得20
6秒前
PPP完成签到,获得积分10
7秒前
7秒前
小小铱完成签到,获得积分10
8秒前
马香芦完成签到,获得积分10
8秒前
思源应助饱满懿轩采纳,获得10
8秒前
9秒前
俊逸慕灵完成签到,获得积分10
9秒前
xuxu完成签到 ,获得积分10
9秒前
cm发布了新的文献求助10
10秒前
yeyeming完成签到,获得积分10
10秒前
聚散流沙完成签到,获得积分10
10秒前
搞怪柔完成签到,获得积分10
10秒前
11秒前
脑洞疼应助霸气的保温杯采纳,获得10
11秒前
大模型应助郑历康采纳,获得10
12秒前
奋斗老鼠发布了新的文献求助10
13秒前
暴躁汉堡完成签到,获得积分10
13秒前
13秒前
木木应助宁阿霜采纳,获得10
13秒前
Tiffany发布了新的文献求助10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582