亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of InSAR deformation time-series using a long short-term memory neural network

干涉合成孔径雷达 人工神经网络 计算机科学 系列(地层学) 时间序列 合成孔径雷达 循环神经网络 遥感 感知器 大地测量学 人工智能 地质学 机器学习 古生物学
作者
Yi Chen,Yi He,Lifeng Zhang,Youdong Chen,Hongyu Pu,Baoshan Chen,Liya Gao
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:42 (18): 6919-6942 被引量:86
标识
DOI:10.1080/01431161.2021.1947540
摘要

The prediction of land subsidence is a crucial step for early warning of urban infrastructure damage and timely remedy. However, the performance of most mathematical and empirical prediction models is often compromised by their large number of parameters, complex operational processes and sparsely measured values. Currently, the traditional neural network models are popular and effective, but they cannot accurately discover the characteristic changes of time series data. In this paper, a long short-term memory (LSTM) neural network was proposed to predict the land subsidence of time series Interferometric Synthetic Aperture Radar (InSAR). First, the Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) technique was utilized to monitor the time series land subsidence at Beijing Capital International Airport (BCIA) from 2005 to 2010 based on ENVISAT ASAR images with a descending orbit. The results were compared with the existing results to verify the reliability and then used to analyse the temporal and spatial characteristics of the time series land subsidence of the BCIA. Based on the time series InSAR deformation data, the LSTM neural network was used to establish the prediction model of time series InSAR, and the results were compared with those of the Multi-Layer Perceptron (MLP) and Recurrent Neural Network (RNN). The comparison results showed that the LSTM neural network was more accurate than the MLP and RNN on the point scale (the root mean square error was 4.60 mm and the mean absolute error was 3.18 mm), the correlation coefficients between the prediction results of the LSTM neural network and the real InSAR measurement results in 2007 and 2008 were 0.93 mm and 0.96 mm, respectively, indicating that LSTM neural network had better prediction performance. Eventually, based on the land subsidence data of time series InSAR from 2006 to 2010, the LSTM neural network was applied to predict the BCIA time series land subsidence in 2011. The results predicted that cumulative subsidence in September 2011 would reach a maximum of 350 mm. Therefore, the LSTM neural network is a potentially effective prediction method, which can replace numerical or empirical models in the absence of detailed hydrogeological data. Moreover, its prediction results can be used to assist decision-making, early warning and hazard relief.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gszy1975完成签到,获得积分10
刚刚
5秒前
从来都不会放弃zr完成签到,获得积分0
11秒前
MchemG应助科研通管家采纳,获得30
13秒前
顾矜应助科研通管家采纳,获得10
13秒前
Criminology34应助科研通管家采纳,获得10
13秒前
MchemG应助科研通管家采纳,获得30
13秒前
乐乐应助科研通管家采纳,获得10
13秒前
MchemG应助科研通管家采纳,获得30
13秒前
研友_VZG7GZ应助科研通管家采纳,获得10
13秒前
李爱国应助科研通管家采纳,获得10
13秒前
hiu发布了新的文献求助10
17秒前
18秒前
昌老师关注了科研通微信公众号
27秒前
flyinthesky完成签到,获得积分10
32秒前
xingsixs完成签到 ,获得积分10
38秒前
40秒前
51秒前
张晓祁完成签到,获得积分10
53秒前
58秒前
1分钟前
追寻的机器猫完成签到 ,获得积分10
1分钟前
yueying完成签到,获得积分10
1分钟前
沉静完成签到,获得积分20
1分钟前
buno应助哈哈哈采纳,获得10
1分钟前
花陵完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
GingerF完成签到,获得积分0
1分钟前
1分钟前
科研通AI2S应助陳.采纳,获得10
1分钟前
隐形曼青应助陳.采纳,获得10
1分钟前
1分钟前
shimly0101xx发布了新的文献求助10
2分钟前
飘逸的雁露完成签到,获得积分10
2分钟前
11112321321完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助20
2分钟前
陶醉的烤鸡完成签到 ,获得积分10
2分钟前
顾矜应助shimly0101xx采纳,获得10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617027
求助须知:如何正确求助?哪些是违规求助? 4701416
关于积分的说明 14913541
捐赠科研通 4748450
什么是DOI,文献DOI怎么找? 2549262
邀请新用户注册赠送积分活动 1512335
关于科研通互助平台的介绍 1474080