Prediction of InSAR deformation time-series using a long short-term memory neural network

干涉合成孔径雷达 人工神经网络 计算机科学 系列(地层学) 时间序列 合成孔径雷达 循环神经网络 遥感 感知器 大地测量学 人工智能 地质学 机器学习 古生物学
作者
Yi Chen,Yi He,Lifeng Zhang,Youdong Chen,Hongyu Pu,Baoshan Chen,Liya Gao
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:42 (18): 6919-6942 被引量:63
标识
DOI:10.1080/01431161.2021.1947540
摘要

The prediction of land subsidence is a crucial step for early warning of urban infrastructure damage and timely remedy. However, the performance of most mathematical and empirical prediction models is often compromised by their large number of parameters, complex operational processes and sparsely measured values. Currently, the traditional neural network models are popular and effective, but they cannot accurately discover the characteristic changes of time series data. In this paper, a long short-term memory (LSTM) neural network was proposed to predict the land subsidence of time series Interferometric Synthetic Aperture Radar (InSAR). First, the Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) technique was utilized to monitor the time series land subsidence at Beijing Capital International Airport (BCIA) from 2005 to 2010 based on ENVISAT ASAR images with a descending orbit. The results were compared with the existing results to verify the reliability and then used to analyse the temporal and spatial characteristics of the time series land subsidence of the BCIA. Based on the time series InSAR deformation data, the LSTM neural network was used to establish the prediction model of time series InSAR, and the results were compared with those of the Multi-Layer Perceptron (MLP) and Recurrent Neural Network (RNN). The comparison results showed that the LSTM neural network was more accurate than the MLP and RNN on the point scale (the root mean square error was 4.60 mm and the mean absolute error was 3.18 mm), the correlation coefficients between the prediction results of the LSTM neural network and the real InSAR measurement results in 2007 and 2008 were 0.93 mm and 0.96 mm, respectively, indicating that LSTM neural network had better prediction performance. Eventually, based on the land subsidence data of time series InSAR from 2006 to 2010, the LSTM neural network was applied to predict the BCIA time series land subsidence in 2011. The results predicted that cumulative subsidence in September 2011 would reach a maximum of 350 mm. Therefore, the LSTM neural network is a potentially effective prediction method, which can replace numerical or empirical models in the absence of detailed hydrogeological data. Moreover, its prediction results can be used to assist decision-making, early warning and hazard relief.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叶听枫发布了新的文献求助10
1秒前
领导范儿应助Ting222采纳,获得10
2秒前
wanci应助Yichao采纳,获得10
3秒前
3秒前
4秒前
4秒前
4秒前
5秒前
6秒前
7秒前
苹果听枫完成签到,获得积分10
7秒前
去追一只鹿完成签到 ,获得积分10
8秒前
jin1233发布了新的文献求助10
8秒前
侧耳倾听完成签到,获得积分20
8秒前
都是发布了新的文献求助50
10秒前
CipherSage应助DW采纳,获得10
10秒前
11秒前
Lysine发布了新的文献求助10
11秒前
11秒前
11秒前
挺喜欢你发布了新的文献求助10
11秒前
11秒前
Owen应助李新悦采纳,获得10
12秒前
acommonreader完成签到,获得积分10
13秒前
14秒前
勤恳的一斩完成签到,获得积分10
14秒前
qq完成签到,获得积分10
14秒前
tianzml0应助xuxingjie采纳,获得10
14秒前
XM发布了新的文献求助10
16秒前
陈军完成签到,获得积分0
16秒前
zhlh完成签到,获得积分10
16秒前
叶艳霞完成签到,获得积分10
16秒前
17秒前
Hui应助挺喜欢你采纳,获得10
17秒前
chenchen完成签到,获得积分10
17秒前
ayuyu完成签到,获得积分10
17秒前
17秒前
18秒前
18秒前
ZYY发布了新的文献求助10
18秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160183
求助须知:如何正确求助?哪些是违规求助? 2811217
关于积分的说明 7891442
捐赠科研通 2470335
什么是DOI,文献DOI怎么找? 1315418
科研通“疑难数据库(出版商)”最低求助积分说明 630850
版权声明 602038