Deep-learning models for the detection and incidence prediction of chronic kidney disease and type 2 diabetes from retinal fundus images

医学 2型糖尿病 肾脏疾病 糖尿病性视网膜病变 视网膜 糖尿病 眼底(子宫) 人口 眼底摄影 眼科 内科学 内分泌学 荧光血管造影 环境卫生
作者
Kang Zhang,Xiaohong Liu,Jie Xu,Jin Yuan,Wenjia Cai,Ting Chen,Kai Wang,Yuanxu Gao,Sheng Nie,Xiaodong Xu,Xiaoqi Qin,Yuandong Su,W. Xu,Andrea Olvera,Kanmin Xue,Zhihuan Li,Meixia Zhang,Xiaoxi Zeng,Charlotte L Zhang,Oulan Li,Edward E. Zhang,Jie Zhu,Yiming Xu,Daniel Kermany,Kaixin Zhou,Ying Pan,Shaoyun Li,Iat Fan Lai,Ying Chi,Changuang Wang,Michelle Pei,Guangxi Zang,Qi Zhang,Johnson Y. N. Lau,Dennis S.C. Lam,Xiaoguang Zou,Aizezi Wumaier,Jianquan Wang,Yin Shen,Fan Fan Hou,Ping Zhang,Tao Xu,Yong Zhou,Guangyu Wang
出处
期刊:Nature Biomedical Engineering [Springer Nature]
卷期号:5 (6): 533-545 被引量:191
标识
DOI:10.1038/s41551-021-00745-6
摘要

Regular screening for the early detection of common chronic diseases might benefit from the use of deep-learning approaches, particularly in resource-poor or remote settings. Here we show that deep-learning models can be used to identify chronic kidney disease and type 2 diabetes solely from fundus images or in combination with clinical metadata (age, sex, height, weight, body-mass index and blood pressure) with areas under the receiver operating characteristic curve of 0.85–0.93. The models were trained and validated with a total of 115,344 retinal fundus photographs from 57,672 patients and can also be used to predict estimated glomerulal filtration rates and blood-glucose levels, with mean absolute errors of 11.1–13.4 ml min−1 per 1.73 m2 and 0.65–1.1 mmol l−1, and to stratify patients according to disease-progression risk. We evaluated the generalizability of the models for the identification of chronic kidney disease and type 2 diabetes with population-based external validation cohorts and via a prospective study with fundus images captured with smartphones, and assessed the feasibility of predicting disease progression in a longitudinal cohort. Deep-learning models trained on retinal fundus images can be used to identify chronic kidney disease and type 2 diabetes and to predict the risk of the progression of these diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助灵巧荆采纳,获得10
1秒前
wjn完成签到,获得积分10
1秒前
2秒前
竹子完成签到,获得积分10
2秒前
MAKEYF完成签到 ,获得积分10
2秒前
3秒前
Owen应助猪猪hero采纳,获得10
3秒前
4秒前
CipherSage应助海棠yiyi采纳,获得50
5秒前
Khr1stINK发布了新的文献求助10
5秒前
5秒前
脑洞疼应助卡卡采纳,获得10
5秒前
5秒前
Rrr发布了新的文献求助10
6秒前
科研通AI5应助zmy采纳,获得10
7秒前
William鉴哲发布了新的文献求助10
7秒前
情怀应助只道寻常采纳,获得10
8秒前
8秒前
cyy完成签到,获得积分20
8秒前
orixero应助小庄采纳,获得10
9秒前
10秒前
侦察兵发布了新的文献求助10
10秒前
司徒元瑶完成签到 ,获得积分10
10秒前
梓榆发布了新的文献求助10
10秒前
10秒前
sweetbearm应助通~采纳,获得10
10秒前
斯文败类应助成就映秋采纳,获得10
11秒前
123456完成签到,获得积分10
11秒前
11秒前
moonlin完成签到 ,获得积分10
11秒前
12秒前
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
14秒前
wanci应助科研通管家采纳,获得10
14秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
思源应助蟹黄堡不打折采纳,获得10
14秒前
Lily应助科研通管家采纳,获得40
14秒前
敬老院N号应助科研通管家采纳,获得30
14秒前
zzzq应助科研通管家采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794