Deep-learning models for the detection and incidence prediction of chronic kidney disease and type 2 diabetes from retinal fundus images

医学 2型糖尿病 肾脏疾病 糖尿病性视网膜病变 视网膜 糖尿病 眼底(子宫) 人口 眼底摄影 眼科 内科学 内分泌学 荧光血管造影 环境卫生
作者
Kang Zhang,Xiaohong Liu,Jie Xu,Jin Yuan,Wenjia Cai,Ting Chen,Kai Wang,Yuanxu Gao,Sheng Nie,Xiaodong Xu,Xiaoqi Qin,Yuandong Su,W. Xu,Andrea Olvera,Kanmin Xue,Zhihuan Li,Meixia Zhang,Xiaoxi Zeng,Charlotte L Zhang,Oulan Li
出处
期刊:Nature Biomedical Engineering [Springer Nature]
卷期号:5 (6): 533-545 被引量:276
标识
DOI:10.1038/s41551-021-00745-6
摘要

Regular screening for the early detection of common chronic diseases might benefit from the use of deep-learning approaches, particularly in resource-poor or remote settings. Here we show that deep-learning models can be used to identify chronic kidney disease and type 2 diabetes solely from fundus images or in combination with clinical metadata (age, sex, height, weight, body-mass index and blood pressure) with areas under the receiver operating characteristic curve of 0.85–0.93. The models were trained and validated with a total of 115,344 retinal fundus photographs from 57,672 patients and can also be used to predict estimated glomerulal filtration rates and blood-glucose levels, with mean absolute errors of 11.1–13.4 ml min−1 per 1.73 m2 and 0.65–1.1 mmol l−1, and to stratify patients according to disease-progression risk. We evaluated the generalizability of the models for the identification of chronic kidney disease and type 2 diabetes with population-based external validation cohorts and via a prospective study with fundus images captured with smartphones, and assessed the feasibility of predicting disease progression in a longitudinal cohort. Deep-learning models trained on retinal fundus images can be used to identify chronic kidney disease and type 2 diabetes and to predict the risk of the progression of these diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
flywo发布了新的文献求助10
2秒前
lei完成签到,获得积分10
2秒前
缥缈断秋发布了新的文献求助10
3秒前
Naturebo完成签到,获得积分10
3秒前
3秒前
领导范儿应助细腻的山水采纳,获得10
3秒前
4秒前
动次打次发布了新的文献求助10
4秒前
叫我陈老师啊完成签到,获得积分10
4秒前
晴天发布了新的文献求助10
5秒前
zhq发布了新的文献求助10
5秒前
5秒前
5秒前
fyc发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
ma发布了新的文献求助10
7秒前
嘿嘿嘿发布了新的文献求助10
8秒前
FX1688完成签到 ,获得积分10
9秒前
9秒前
pp‘s发布了新的文献求助10
9秒前
颖颖发布了新的文献求助90
10秒前
Hey关闭了Hey文献求助
10秒前
浮游应助科研通管家采纳,获得10
11秒前
Mic应助科研通管家采纳,获得10
11秒前
大模型应助11采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
xxfsx应助科研通管家采纳,获得10
11秒前
11秒前
xjx完成签到,获得积分20
11秒前
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
xixi完成签到,获得积分10
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
正己化人应助科研通管家采纳,获得10
11秒前
充电宝应助lyl采纳,获得10
11秒前
Frank应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468825
求助须知:如何正确求助?哪些是违规求助? 4572157
关于积分的说明 14333943
捐赠科研通 4498964
什么是DOI,文献DOI怎么找? 2464789
邀请新用户注册赠送积分活动 1453376
关于科研通互助平台的介绍 1427939