亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An interpretable machine learning method for supporting ecosystem management: Application to species distribution models of freshwater macroinvertebrates

可解释性 物种分布 航程(航空) 生态学 变量(数学) 随机森林 生态系统 一套 机器学习 限制 计算机科学 栖息地 数学 地理 生物 工程类 考古 航空航天工程 数学分析 机械工程
作者
YoonKyung Cha,Jihoon Shin,ByeongGeon Go,Dae‐Seong Lee,Young Woo Kim,TaeHo Kim,Young‐Seuk Park
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:291: 112719-112719 被引量:60
标识
DOI:10.1016/j.jenvman.2021.112719
摘要

Species distribution models (SDMs), in which species occurrences are related to a suite of environmental variables, have been used as a decision-making tool in ecosystem management. Complex machine learning (ML) algorithms that lack interpretability may hinder the use of SDMs for ecological explanations, possibly limiting the role of SDMs as a decision-support tool. To meet the growing demand of explainable MLs, several interpretable ML methods have recently been proposed. Among these methods, SHaply Additive exPlanation (SHAP) has drawn attention for its robust theoretical justification and analytical gains. In this study, the utility of SHAP was demonstrated by the application of SDMs of four benthic macroinvertebrate species. In addition to species responses, the dataset contained 22 environmental variables monitored at 436 sites across five major rivers of South Korea. A range of ML algorithms was employed for model development. Each ML model was trained and optimized using 10-fold cross-validation. Model evaluation based on the test dataset indicated strong model performance, with an accuracy of ≥0.7 in all evaluation metrics for all MLs and species. However, only the random forest algorithm showed a behavior consistent with the known ecology of the investigated species. SHAP presents an integrated framework in which local interpretations that incorporate local interaction effects are combined to represent the global model structure. Consequently, this framework offered a novel opportunity to assess the importance of variables in predicting species occurrence, not only across sites, but also for individual sites. Furthermore, removing interaction effects from variable importance values (SHAP values) clearly revealed non-linear species responses to variations in environmental variables, indicating the existence of ecological thresholds. This study provides guidelines for the use of a new interpretable method supporting ecosystem management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助年轻的如冰采纳,获得10
4秒前
12秒前
佛fire发布了新的文献求助10
12秒前
轻松觅柔发布了新的文献求助10
16秒前
科研通AI2S应助年轻的如冰采纳,获得10
18秒前
Buendia完成签到,获得积分10
19秒前
大脸猫4811发布了新的文献求助20
20秒前
小彬完成签到 ,获得积分10
33秒前
34秒前
852应助大脸猫4811采纳,获得10
37秒前
CipherSage应助小小康康采纳,获得10
43秒前
45秒前
CSun完成签到,获得积分10
48秒前
多多发布了新的文献求助10
50秒前
华仔应助CSun采纳,获得10
53秒前
花开半夏完成签到 ,获得积分10
53秒前
55秒前
Lucas应助多多采纳,获得10
58秒前
1分钟前
1分钟前
Owen应助科研通管家采纳,获得10
1分钟前
1分钟前
山谷与花发布了新的文献求助10
1分钟前
花开半夏发布了新的文献求助10
1分钟前
顺利兰完成签到 ,获得积分10
1分钟前
Yuan.完成签到,获得积分10
1分钟前
山谷与花完成签到,获得积分20
2分钟前
绿海发布了新的文献求助10
2分钟前
float完成签到 ,获得积分10
2分钟前
现实的幻露完成签到 ,获得积分10
2分钟前
candice624完成签到,获得积分10
2分钟前
脆香可丽饼应助candice624采纳,获得10
2分钟前
2分钟前
LiangRen完成签到 ,获得积分10
2分钟前
sunyuhao发布了新的文献求助10
2分钟前
2分钟前
JamesPei应助无私的含海采纳,获得10
2分钟前
Jasper应助sunyuhao采纳,获得10
3分钟前
3分钟前
DD完成签到 ,获得积分10
3分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146703
求助须知:如何正确求助?哪些是违规求助? 2798001
关于积分的说明 7826426
捐赠科研通 2454508
什么是DOI,文献DOI怎么找? 1306308
科研通“疑难数据库(出版商)”最低求助积分说明 627692
版权声明 601522