An interpretable machine learning method for supporting ecosystem management: Application to species distribution models of freshwater macroinvertebrates

可解释性 物种分布 航程(航空) 生态学 变量(数学) 随机森林 生态系统 一套 机器学习 限制 计算机科学 栖息地 数学 地理 生物 工程类 考古 航空航天工程 数学分析 机械工程
作者
YoonKyung Cha,Jihoon Shin,ByeongGeon Go,Dae‐Seong Lee,Young Woo Kim,TaeHo Kim,Young‐Seuk Park
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:291: 112719-112719 被引量:60
标识
DOI:10.1016/j.jenvman.2021.112719
摘要

Species distribution models (SDMs), in which species occurrences are related to a suite of environmental variables, have been used as a decision-making tool in ecosystem management. Complex machine learning (ML) algorithms that lack interpretability may hinder the use of SDMs for ecological explanations, possibly limiting the role of SDMs as a decision-support tool. To meet the growing demand of explainable MLs, several interpretable ML methods have recently been proposed. Among these methods, SHaply Additive exPlanation (SHAP) has drawn attention for its robust theoretical justification and analytical gains. In this study, the utility of SHAP was demonstrated by the application of SDMs of four benthic macroinvertebrate species. In addition to species responses, the dataset contained 22 environmental variables monitored at 436 sites across five major rivers of South Korea. A range of ML algorithms was employed for model development. Each ML model was trained and optimized using 10-fold cross-validation. Model evaluation based on the test dataset indicated strong model performance, with an accuracy of ≥0.7 in all evaluation metrics for all MLs and species. However, only the random forest algorithm showed a behavior consistent with the known ecology of the investigated species. SHAP presents an integrated framework in which local interpretations that incorporate local interaction effects are combined to represent the global model structure. Consequently, this framework offered a novel opportunity to assess the importance of variables in predicting species occurrence, not only across sites, but also for individual sites. Furthermore, removing interaction effects from variable importance values (SHAP values) clearly revealed non-linear species responses to variations in environmental variables, indicating the existence of ecological thresholds. This study provides guidelines for the use of a new interpretable method supporting ecosystem management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
hqlran完成签到,获得积分10
1秒前
袅袅发布了新的文献求助10
1秒前
1秒前
爆米花应助小喵采纳,获得10
1秒前
2秒前
3秒前
xxx发布了新的文献求助10
3秒前
3秒前
胡说八道完成签到 ,获得积分10
3秒前
高兴帅哥完成签到,获得积分10
4秒前
6秒前
aslink完成签到,获得积分10
6秒前
Amon完成签到,获得积分10
6秒前
啊娴仔发布了新的文献求助10
6秒前
camellia发布了新的文献求助10
6秒前
万能图书馆应助狂野觅云采纳,获得10
6秒前
充电宝应助zino采纳,获得10
7秒前
7秒前
小可发布了新的文献求助10
7秒前
英姑应助酷酷的起眸采纳,获得10
8秒前
Blue_Pig发布了新的文献求助10
8秒前
科研小白完成签到,获得积分10
9秒前
sooya发布了新的文献求助20
10秒前
10秒前
tiddler完成签到,获得积分10
10秒前
科研通AI2S应助滴滴采纳,获得10
10秒前
wgx完成签到,获得积分20
10秒前
11秒前
爱静静应助Keep采纳,获得10
11秒前
11秒前
11秒前
小马甲应助韭菜采纳,获得10
12秒前
MADKAI发布了新的文献求助10
12秒前
机智的白猫完成签到,获得积分10
12秒前
李健的小迷弟应助xxx采纳,获得10
12秒前
杜杜完成签到,获得积分10
12秒前
NexusExplorer应助新的心跳采纳,获得10
13秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759