An interpretable machine learning method for supporting ecosystem management: Application to species distribution models of freshwater macroinvertebrates

可解释性 物种分布 航程(航空) 生态学 变量(数学) 随机森林 生态系统 一套 机器学习 限制 计算机科学 栖息地 数学 地理 生物 工程类 考古 航空航天工程 数学分析 机械工程
作者
YoonKyung Cha,Jihoon Shin,ByeongGeon Go,Dae‐Seong Lee,Young Woo Kim,TaeHo Kim,Young‐Seuk Park
出处
期刊:Journal of Environmental Management [Elsevier BV]
卷期号:291: 112719-112719 被引量:60
标识
DOI:10.1016/j.jenvman.2021.112719
摘要

Species distribution models (SDMs), in which species occurrences are related to a suite of environmental variables, have been used as a decision-making tool in ecosystem management. Complex machine learning (ML) algorithms that lack interpretability may hinder the use of SDMs for ecological explanations, possibly limiting the role of SDMs as a decision-support tool. To meet the growing demand of explainable MLs, several interpretable ML methods have recently been proposed. Among these methods, SHaply Additive exPlanation (SHAP) has drawn attention for its robust theoretical justification and analytical gains. In this study, the utility of SHAP was demonstrated by the application of SDMs of four benthic macroinvertebrate species. In addition to species responses, the dataset contained 22 environmental variables monitored at 436 sites across five major rivers of South Korea. A range of ML algorithms was employed for model development. Each ML model was trained and optimized using 10-fold cross-validation. Model evaluation based on the test dataset indicated strong model performance, with an accuracy of ≥0.7 in all evaluation metrics for all MLs and species. However, only the random forest algorithm showed a behavior consistent with the known ecology of the investigated species. SHAP presents an integrated framework in which local interpretations that incorporate local interaction effects are combined to represent the global model structure. Consequently, this framework offered a novel opportunity to assess the importance of variables in predicting species occurrence, not only across sites, but also for individual sites. Furthermore, removing interaction effects from variable importance values (SHAP values) clearly revealed non-linear species responses to variations in environmental variables, indicating the existence of ecological thresholds. This study provides guidelines for the use of a new interpretable method supporting ecosystem management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Wang完成签到 ,获得积分10
2秒前
刘晨旭发布了新的文献求助10
3秒前
云淡风轻一宝完成签到,获得积分10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
3秒前
大模型应助zzz采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得30
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
lara应助科研通管家采纳,获得10
4秒前
无花果应助科研通管家采纳,获得30
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
May应助科研通管家采纳,获得20
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
64658应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
Lucas应助Freya采纳,获得30
5秒前
Akim应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
华仔应助科研通管家采纳,获得10
5秒前
5秒前
养猪骑士完成签到,获得积分10
5秒前
5秒前
5秒前
李健应助科研通管家采纳,获得10
5秒前
陈博文完成签到,获得积分20
5秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966029
求助须知:如何正确求助?哪些是违规求助? 3511354
关于积分的说明 11157644
捐赠科研通 3245890
什么是DOI,文献DOI怎么找? 1793218
邀请新用户注册赠送积分活动 874262
科研通“疑难数据库(出版商)”最低求助积分说明 804296