Adaptive neural network-based path tracking control for autonomous combine harvester with input saturation

控制理论(社会学) 计算机科学 跟踪(教育) 人工神经网络 控制工程 控制器(灌溉) 自适应控制 路径(计算) 控制(管理) 控制系统 非线性系统 弹道 跟踪误差 适应性 自适应系统
作者
Yuexin Zhang,Lihui Wang,Yaodong Liu
出处
期刊:Industrial Robot-an International Journal [Emerald (MCB UP)]
卷期号:48 (4): 510-522
标识
DOI:10.1108/ir-10-2020-0231
摘要

To reduce the effect of parameter uncertainties and input saturation on path tracking control for autonomous combine harvester, a path tracking controller is proposed, which integrates an adaptive neural network estimator and a saturation-aided system.,First, to analyze and compensate the influence of external factors, the vehicle model is established combining a dynamic model and a kinematic model. Meanwhile, to make the model simple, a comprehensive error is used, weighting heading error and position error simultaneously. Second, an adaptive neural network estimator is presented to calculate uncertain parameters which eventually improve the dynamic model. Then, the path tracking controller based on the improved dynamic model is designed by using the backstepping method, and its stability is proved by the Lyapunov theorem. Third, to mitigate round-trip operation of the actuator due to input saturation, a saturation-aided variable is presented during the control design process.,To verify the tracking accuracy and environmental adaptability of the proposed controller, numerical simulations are carried out under three different cases, and field experiments are performed in harvesting wheat and paddy. The experimental results demonstrate the tracking errors of the proposed controller that are reduced by more than 28% with contrast to the conventional controllers.,An adaptive neural network-based path tracking control is proposed, which considers both parameter uncertainties and input saturation. As far as we know, this is the first time a path tracking controller is specifically designed for the combine harvester with full consideration of working characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清脆的萍完成签到 ,获得积分10
刚刚
西西弗完成签到 ,获得积分10
刚刚
LZJ完成签到,获得积分10
1秒前
文艺的青旋完成签到 ,获得积分10
3秒前
汉堡包应助寸愿采纳,获得10
4秒前
6秒前
小二郎应助Dkakxncnsksl采纳,获得10
7秒前
谢宇完成签到,获得积分10
7秒前
520完成签到,获得积分20
8秒前
nyc发布了新的文献求助10
10秒前
高高的无敌关注了科研通微信公众号
10秒前
我是老大应助大胆寒风采纳,获得10
10秒前
英姑应助zxfaaaaa采纳,获得10
14秒前
逸龙完成签到,获得积分10
14秒前
射天狼发布了新的文献求助10
15秒前
15秒前
15秒前
徐小赞完成签到,获得积分10
15秒前
乐乐应助Jay01采纳,获得10
16秒前
从容之云发布了新的文献求助10
17秒前
17秒前
17秒前
Ton汤完成签到,获得积分10
19秒前
20秒前
晨曦发布了新的文献求助10
20秒前
21秒前
21秒前
Dkakxncnsksl发布了新的文献求助10
23秒前
25秒前
徐小赞发布了新的文献求助30
25秒前
Venus完成签到,获得积分10
27秒前
情怀应助鱼啦啦采纳,获得10
27秒前
充电宝应助功夫采纳,获得10
28秒前
29秒前
31秒前
nyc发布了新的文献求助10
32秒前
34秒前
深情安青应助读研好难采纳,获得10
34秒前
MaoM发布了新的文献求助10
35秒前
lmd完成签到,获得积分10
35秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164310
求助须知:如何正确求助?哪些是违规求助? 2815071
关于积分的说明 7907481
捐赠科研通 2474626
什么是DOI,文献DOI怎么找? 1317598
科研通“疑难数据库(出版商)”最低求助积分说明 631857
版权声明 602228