GPX1型
氧化应激
谷胱甘肽过氧化物酶
GPX4
抗氧化剂
脂多糖
硒
化学
谷胱甘肽
免疫印迹
内分泌学
过氧化氢酶
分子生物学
生物
生物化学
酶
基因
有机化学
作者
S.O. Adeniran,Peng Zheng,Rui Feng,Elikanah Olusayo Adegoke,Fushuo Huang,Mingjun Ma,Ziming Wang,Olamigoke O. Ifarajimi,Xiaoyu Li,Guixue Zhang
标识
DOI:10.1007/s12011-021-02731-0
摘要
This study investigated the antioxidant role of selenium (Se) in the form of selenomethionine (SLM) in LPS-induced oxidative stress via the glutathione peroxidase (GPx) enzymes and the Nrf2/HO-1 transcription factor. The impact of serum supplementation in culture media on GPxs was also studied. The bovine uterus is constantly exposed to exogenous pathogens postpartum, and the endometrium is the first contact against bacteria invasion. Endometritis is an inflammation of the endometrium and is brought about by bacterial lipopolysaccharide capable of inducing oxidative stress. The BEND cells were supplemented at the point of seeding with the following SLM concentrations 0, 100, 500, and 1000 nM for 48 h. BEND cells, cultured with or without SLM (100 nM), were initially incubated for 48 h, and then, we serum starved the SLM group for 24, 48, and 72 h. Similarly, an assay involving serum volume (0, 2, 5, and 10%) supplementation in culture media (v/v) with or without SLM (100 nM) was performed for 48 h. The BEND cells were also seeded into four experimental groups and cultured for an initial 48 h as follows: control, LPS (20 μg/mL), SLM (100 nM), and SLM + LPS groups followed by 6-h LPS treatment. The role of SLM in modulating the expressions of GPx1 and GPx4 and the Nrf2 transcription factor-related genes was assessed using qRT-PCR and Western blot techniques. The results showed serum starvation in the presence of SLM supplementation decreased the expression of GPx1 enzyme but increased GPx4 compared to the control. The addition of SLM to cell culture media in an FBS limiting condition improved the expressions of both GPx1 and GPx4. SLM supplementation promoted GPx enzymes' expressions in a serum-free media (0%) and at 2% FBS in media. However, it did not improve their expressions at 10% FBS in media than the untreated groups. Together, our data show the protective role of Se by regulating the expressions of GPx1 and GPx4 enzymes in BEND cells. It also shows that SLM promoted the expression of Nrf2 transcription factor-related genes at both the mRNA and protein levels in BEND cells during LPS stimulation.
科研通智能强力驱动
Strongly Powered by AbleSci AI