In-situ synthesis of N, S co-doped hollow carbon microspheres for efficient catalytic oxidation of organic contaminants

催化作用 杂原子 化学 过硫酸盐 苯并噻唑 碳化 除氧 电子顺磁共振 光化学 激进的 化学工程 有机化学 物理 核磁共振 戒指(化学) 吸附 工程类
作者
Yongbing Xie,Ya Liu,Yujie Yao,Yanchun Shi,Binran Zhao,Yuxian Wang
出处
期刊:Chinese Chemical Letters [Elsevier]
卷期号:33 (3): 1298-1302 被引量:23
标识
DOI:10.1016/j.cclet.2021.07.055
摘要

Metal-free heteroatom doped nanocarbons are promising alternatives to the metal-based materials in catalytic ozonation for destruction of aqueous organic contaminants. In this study, N, S co-doped hollow carbon microspheres (NSCs) were synthesized from the polymerization products during persulfate wet air oxidation of benzothiazole. The contents of doped N and S as well as the structural stability were maneuvered by adjusting the subsequent N2-annealing temperature. Compared with the prevailing single-walled carbon nanotubes, the N2-annealed NSCs demonstrated a higher catalytic ozonation activity for benzimidazole degradation. According to the quantitative structure-activity relationship (QSAR) analysis, the synergistic effect between the graphitic N and the thiophene-S which redistributed the charge distribution of the carbon basal plane contributed to the activity enhancement of the N2-annealed NSCs. Additionally, the hollow structure within the microspheres served as the microreactor to boost the mass transfer and reaction kinetics via the nanoconfinement effects. Quenching and electron paramagnetic resonance (EPR) tests revealed that benzimidazole degradation was dominated by the produced singlet oxygen (1O2) species, while hydroxyl radicals (•OH) were also generated and participated. This study puts forward a novel strategy for synthesis of heteroatom-doped nanocarbons and sheds a light on the relationship between the active sites on the doped nanocarbons and the catalytic performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张大旺发布了新的文献求助10
刚刚
5秒前
WZY完成签到,获得积分10
5秒前
7秒前
苏远山爱吃西红柿完成签到,获得积分10
8秒前
小小美少女完成签到 ,获得积分10
9秒前
9秒前
碧空蝉完成签到,获得积分10
12秒前
13秒前
NEKO发布了新的文献求助30
15秒前
16秒前
EKKO完成签到,获得积分10
17秒前
17秒前
谨慎的CZ完成签到 ,获得积分10
19秒前
20秒前
yushiolo发布了新的文献求助10
21秒前
杨紫宸发布了新的文献求助10
22秒前
香菜完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
23秒前
云朵发布了新的文献求助30
24秒前
25秒前
安白枫发布了新的文献求助10
25秒前
26秒前
26秒前
Shu舒发布了新的文献求助10
27秒前
29秒前
mufcyang完成签到,获得积分10
29秒前
杨紫宸完成签到,获得积分10
33秒前
34秒前
英姑应助顶天立地采纳,获得30
36秒前
含蓄听南完成签到 ,获得积分10
36秒前
37秒前
一条闲鱼发布了新的文献求助10
39秒前
科目三应助Leonard采纳,获得10
39秒前
可可奇发布了新的文献求助10
42秒前
43秒前
WTaMi完成签到,获得积分10
44秒前
翻斗花园612完成签到,获得积分10
45秒前
7分运气完成签到,获得积分10
48秒前
刘雨森完成签到 ,获得积分10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604076
求助须知:如何正确求助?哪些是违规求助? 4688879
关于积分的说明 14856774
捐赠科研通 4696188
什么是DOI,文献DOI怎么找? 2541118
邀请新用户注册赠送积分活动 1507302
关于科研通互助平台的介绍 1471851