Data-driven clustering differentiates subtypes of major depressive disorder with distinct brain connectivity and symptom features

无血性 重性抑郁障碍 功能磁共振成像 心理学 萧条(经济学) 医学 神经科学 精神科 临床心理学 心情 精神分裂症(面向对象编程) 经济 宏观经济学
作者
Yanlin Wang,Shi Tang,Lianqing Zhang,Xuan Bu,Lu Lu,Hailong Li,Yingxue Gao,Xinyu Hu,Weihong Kuang,Zhiyun Jia,John A. Sweeney,Qiyong Gong,Xiaoqi Huang
出处
期刊:British Journal of Psychiatry [Royal College of Psychiatrists]
卷期号:219 (5): 606-613 被引量:44
标识
DOI:10.1192/bjp.2021.103
摘要

Background Major depressive disorder (MDD) is a clinically and biologically heterogeneous syndrome. Identifying discrete subtypes of illness with distinguishing neurobiological substrates and clinical features is a promising strategy for guiding personalised therapeutics. Aims This study aimed to identify depression subtypes with correlated patterns of functional network connectivity and clinical symptoms by clustering patients according to a weighted linear combination of both features in a relatively large, medication-naïve depression sample. Method We recruited 115 medication-naïve adults with MDD and 129 matched healthy controls, and evaluated all participants with magnetic resonance imaging. We used regularised canonical correlation analysis to identify component mapping relationships between functional network connectivity and symptom profiles, and K -means clustering was used to define distinct subtypes of patients. Results Two subtypes of MDD were identified: insomnia-dominated subtype 1 and anhedonia-dominated subtype 2. Subtype 1 was characterised by abnormal hyperconnectivity within the ventral attention network and sleep maintenance insomnia. Subtype 2 was characterised by abnormal hypoconnectivity in the subcortical and dorsal attention networks, and prominent anhedonia symptoms. Conclusions Our study identified two distinct subtypes of patients with specific neurobiological and clinical symptom profiles. These findings advance understanding of the biological and clinical heterogeneity of MDD, offering a pathway for defining categorical subtypes of illness via consideration of both biological and clinical features.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
momo发布了新的文献求助10
2秒前
4秒前
6秒前
Pattis完成签到 ,获得积分10
7秒前
红红发布了新的文献求助10
7秒前
Solkatt发布了新的文献求助10
9秒前
gavin完成签到 ,获得积分10
9秒前
小马甲应助tracy采纳,获得10
10秒前
11秒前
niNe3YUE应助朴实雪兰采纳,获得10
12秒前
大意的茈完成签到 ,获得积分10
12秒前
杰尼龟完成签到,获得积分10
13秒前
打打应助红红采纳,获得30
15秒前
南沐沐完成签到 ,获得积分20
15秒前
良医完成签到 ,获得积分10
16秒前
大个应助ziwnbn采纳,获得10
16秒前
刘慧发布了新的文献求助10
17秒前
zzz完成签到 ,获得积分10
18秒前
Lucas应助Solkatt采纳,获得10
18秒前
19秒前
19秒前
江浔卿发布了新的文献求助10
20秒前
南沐沐关注了科研通微信公众号
20秒前
21秒前
思源应助Xjx6519采纳,获得10
21秒前
炒栗子发布了新的文献求助10
21秒前
无花果应助MoNeng采纳,获得10
22秒前
科研通AI2S应助爱搬玉米采纳,获得10
23秒前
善学以致用应助刘慧采纳,获得10
24秒前
搜集达人应助羽化成环采纳,获得10
24秒前
mouxq发布了新的文献求助10
25秒前
26秒前
27秒前
内向怀曼完成签到,获得积分10
28秒前
29秒前
momo完成签到,获得积分10
31秒前
流沙完成签到,获得积分10
31秒前
31秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557467
求助须知:如何正确求助?哪些是违规求助? 4642491
关于积分的说明 14668341
捐赠科研通 4583911
什么是DOI,文献DOI怎么找? 2514433
邀请新用户注册赠送积分活动 1488818
关于科研通互助平台的介绍 1459439