Data-driven clustering differentiates subtypes of major depressive disorder with distinct brain connectivity and symptom features

无血性 重性抑郁障碍 功能磁共振成像 心理学 萧条(经济学) 医学 神经科学 精神科 临床心理学 心情 精神分裂症(面向对象编程) 经济 宏观经济学
作者
Yanlin Wang,Shi Tang,Lianqing Zhang,Xuan Bu,Lu Lu,Hailong Li,Yingxue Gao,Xinyu Hu,Weihong Kuang,Zhiyun Jia,John A. Sweeney,Qiyong Gong,Xiaoqi Huang
出处
期刊:British Journal of Psychiatry [Royal College of Psychiatrists]
卷期号:219 (5): 606-613 被引量:44
标识
DOI:10.1192/bjp.2021.103
摘要

Background Major depressive disorder (MDD) is a clinically and biologically heterogeneous syndrome. Identifying discrete subtypes of illness with distinguishing neurobiological substrates and clinical features is a promising strategy for guiding personalised therapeutics. Aims This study aimed to identify depression subtypes with correlated patterns of functional network connectivity and clinical symptoms by clustering patients according to a weighted linear combination of both features in a relatively large, medication-naïve depression sample. Method We recruited 115 medication-naïve adults with MDD and 129 matched healthy controls, and evaluated all participants with magnetic resonance imaging. We used regularised canonical correlation analysis to identify component mapping relationships between functional network connectivity and symptom profiles, and K -means clustering was used to define distinct subtypes of patients. Results Two subtypes of MDD were identified: insomnia-dominated subtype 1 and anhedonia-dominated subtype 2. Subtype 1 was characterised by abnormal hyperconnectivity within the ventral attention network and sleep maintenance insomnia. Subtype 2 was characterised by abnormal hypoconnectivity in the subcortical and dorsal attention networks, and prominent anhedonia symptoms. Conclusions Our study identified two distinct subtypes of patients with specific neurobiological and clinical symptom profiles. These findings advance understanding of the biological and clinical heterogeneity of MDD, offering a pathway for defining categorical subtypes of illness via consideration of both biological and clinical features.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
dxszing完成签到 ,获得积分10
7秒前
Jiro完成签到,获得积分10
11秒前
牛仔完成签到 ,获得积分10
11秒前
ice发布了新的文献求助10
11秒前
妮妮完成签到 ,获得积分10
12秒前
嘟嘟52edm完成签到 ,获得积分10
14秒前
萧萧完成签到,获得积分10
23秒前
charint应助安静采纳,获得10
24秒前
ice完成签到,获得积分10
25秒前
帆帆帆完成签到 ,获得积分10
26秒前
希希完成签到 ,获得积分10
26秒前
专心搞科研完成签到 ,获得积分10
31秒前
闲来逛逛007完成签到 ,获得积分10
32秒前
超越俗尘完成签到,获得积分10
34秒前
羽冰酒完成签到 ,获得积分10
35秒前
jesi完成签到,获得积分10
38秒前
shrimp5215完成签到,获得积分10
43秒前
JESI完成签到,获得积分10
47秒前
COIN_77完成签到 ,获得积分10
48秒前
隐形曼青应助Lee_yuan采纳,获得10
51秒前
海猫食堂完成签到,获得积分0
58秒前
Hzml完成签到 ,获得积分10
1分钟前
搞怪的白云完成签到 ,获得积分10
1分钟前
fzd完成签到,获得积分10
1分钟前
starcraftfan完成签到,获得积分10
1分钟前
欧阳发布了新的文献求助10
1分钟前
王志新完成签到,获得积分10
1分钟前
侠医2012完成签到,获得积分0
1分钟前
锅包又完成签到 ,获得积分10
1分钟前
欧阳完成签到,获得积分10
1分钟前
-Me完成签到 ,获得积分10
1分钟前
Mollyxueyue发布了新的文献求助10
1分钟前
alex12259完成签到 ,获得积分10
1分钟前
喜文完成签到 ,获得积分10
1分钟前
今我来思完成签到 ,获得积分10
1分钟前
小钥匙完成签到 ,获得积分10
1分钟前
王kk完成签到 ,获得积分10
1分钟前
wang完成签到,获得积分10
1分钟前
mayzee完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565186
求助须知:如何正确求助?哪些是违规求助? 4650012
关于积分的说明 14689551
捐赠科研通 4591914
什么是DOI,文献DOI怎么找? 2519388
邀请新用户注册赠送积分活动 1491921
关于科研通互助平台的介绍 1463136