Data-driven clustering differentiates subtypes of major depressive disorder with distinct brain connectivity and symptom features

无血性 重性抑郁障碍 功能磁共振成像 心理学 萧条(经济学) 医学 神经科学 精神科 临床心理学 心情 精神分裂症(面向对象编程) 经济 宏观经济学
作者
Yanlin Wang,Shi Tang,Lianqing Zhang,Xuan Bu,Lu Lu,Hailong Li,Yingxue Gao,Xinyu Hu,Weihong Kuang,Zhiyun Jia,John A. Sweeney,Qiyong Gong,Xiaoqi Huang
出处
期刊:British Journal of Psychiatry [Royal College of Psychiatrists]
卷期号:219 (5): 606-613 被引量:44
标识
DOI:10.1192/bjp.2021.103
摘要

Background Major depressive disorder (MDD) is a clinically and biologically heterogeneous syndrome. Identifying discrete subtypes of illness with distinguishing neurobiological substrates and clinical features is a promising strategy for guiding personalised therapeutics. Aims This study aimed to identify depression subtypes with correlated patterns of functional network connectivity and clinical symptoms by clustering patients according to a weighted linear combination of both features in a relatively large, medication-naïve depression sample. Method We recruited 115 medication-naïve adults with MDD and 129 matched healthy controls, and evaluated all participants with magnetic resonance imaging. We used regularised canonical correlation analysis to identify component mapping relationships between functional network connectivity and symptom profiles, and K -means clustering was used to define distinct subtypes of patients. Results Two subtypes of MDD were identified: insomnia-dominated subtype 1 and anhedonia-dominated subtype 2. Subtype 1 was characterised by abnormal hyperconnectivity within the ventral attention network and sleep maintenance insomnia. Subtype 2 was characterised by abnormal hypoconnectivity in the subcortical and dorsal attention networks, and prominent anhedonia symptoms. Conclusions Our study identified two distinct subtypes of patients with specific neurobiological and clinical symptom profiles. These findings advance understanding of the biological and clinical heterogeneity of MDD, offering a pathway for defining categorical subtypes of illness via consideration of both biological and clinical features.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
难过盼海发布了新的文献求助10
刚刚
1秒前
Jasper应助JD采纳,获得10
1秒前
hanry完成签到 ,获得积分10
2秒前
木南完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
3秒前
研友_Zlx3aZ发布了新的文献求助10
3秒前
4秒前
调皮秋凌完成签到,获得积分20
4秒前
4秒前
荣容完成签到 ,获得积分10
4秒前
5秒前
5秒前
Stone完成签到,获得积分10
5秒前
不吃橘子发布了新的文献求助30
5秒前
陈秋禹发布了新的文献求助10
6秒前
科研通AI6应助bnvgx采纳,获得10
6秒前
浮游应助派大星采纳,获得10
6秒前
6秒前
今后应助luchang123qq采纳,获得10
7秒前
7秒前
uniseen发布了新的文献求助10
8秒前
8秒前
汤飞柏发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
wzy发布了新的文献求助10
10秒前
10秒前
10秒前
静乖乖发布了新的文献求助10
10秒前
蜜桃奇迹发布了新的文献求助10
10秒前
轻薄的电脑应助蔬菜狗狗采纳,获得20
10秒前
虚心十三发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526219
求助须知:如何正确求助?哪些是违规求助? 4616313
关于积分的说明 14553183
捐赠科研通 4554594
什么是DOI,文献DOI怎么找? 2495952
邀请新用户注册赠送积分活动 1476311
关于科研通互助平台的介绍 1447978