Data-driven clustering differentiates subtypes of major depressive disorder with distinct brain connectivity and symptom features

无血性 重性抑郁障碍 功能磁共振成像 心理学 萧条(经济学) 医学 神经科学 精神科 临床心理学 心情 精神分裂症(面向对象编程) 经济 宏观经济学
作者
Yanlin Wang,Shi Tang,Lianqing Zhang,Xuan Bu,Lu Lu,Hailong Li,Yingxue Gao,Xinyu Hu,Weihong Kuang,Zhiyun Jia,John A. Sweeney,Qiyong Gong,Xiaoqi Huang
出处
期刊:British Journal of Psychiatry [Royal College of Psychiatrists]
卷期号:219 (5): 606-613 被引量:44
标识
DOI:10.1192/bjp.2021.103
摘要

Background Major depressive disorder (MDD) is a clinically and biologically heterogeneous syndrome. Identifying discrete subtypes of illness with distinguishing neurobiological substrates and clinical features is a promising strategy for guiding personalised therapeutics. Aims This study aimed to identify depression subtypes with correlated patterns of functional network connectivity and clinical symptoms by clustering patients according to a weighted linear combination of both features in a relatively large, medication-naïve depression sample. Method We recruited 115 medication-naïve adults with MDD and 129 matched healthy controls, and evaluated all participants with magnetic resonance imaging. We used regularised canonical correlation analysis to identify component mapping relationships between functional network connectivity and symptom profiles, and K -means clustering was used to define distinct subtypes of patients. Results Two subtypes of MDD were identified: insomnia-dominated subtype 1 and anhedonia-dominated subtype 2. Subtype 1 was characterised by abnormal hyperconnectivity within the ventral attention network and sleep maintenance insomnia. Subtype 2 was characterised by abnormal hypoconnectivity in the subcortical and dorsal attention networks, and prominent anhedonia symptoms. Conclusions Our study identified two distinct subtypes of patients with specific neurobiological and clinical symptom profiles. These findings advance understanding of the biological and clinical heterogeneity of MDD, offering a pathway for defining categorical subtypes of illness via consideration of both biological and clinical features.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuhuayaxi发布了新的文献求助20
刚刚
caigou发布了新的文献求助10
刚刚
执着的飞荷完成签到,获得积分10
1秒前
活力的青旋完成签到 ,获得积分10
1秒前
1秒前
wangly发布了新的文献求助10
2秒前
亚鹏发布了新的文献求助10
2秒前
3秒前
KQ发布了新的文献求助10
3秒前
dropofwater完成签到,获得积分10
3秒前
FRANKFANG发布了新的文献求助30
3秒前
guulee完成签到,获得积分10
3秒前
小蓝莓完成签到,获得积分10
3秒前
bkagyin应助小卡拉米采纳,获得10
3秒前
4秒前
4秒前
wang完成签到,获得积分10
4秒前
4秒前
5秒前
科研通AI2S应助liu采纳,获得20
5秒前
5秒前
晓风残月完成签到,获得积分10
6秒前
6秒前
酷波er应助kdfdds采纳,获得10
6秒前
桐桐应助xiaojinzi采纳,获得10
6秒前
6秒前
卡卡西西西完成签到,获得积分10
7秒前
7秒前
8秒前
愉快的老三完成签到,获得积分10
8秒前
up关闭了up文献求助
9秒前
9秒前
9秒前
9秒前
冷酷紫蓝发布了新的文献求助10
9秒前
9秒前
9秒前
高高高发布了新的文献求助10
10秒前
10秒前
SSY发布了新的文献求助10
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233