Data-driven clustering differentiates subtypes of major depressive disorder with distinct brain connectivity and symptom features

无血性 重性抑郁障碍 功能磁共振成像 心理学 萧条(经济学) 医学 神经科学 精神科 临床心理学 心情 精神分裂症(面向对象编程) 宏观经济学 经济
作者
Yanlin Wang,Shi Tang,Lianqing Zhang,Xuan Bu,Lu Lu,Hailong Li,Yingxue Gao,Xinyu Hu,Weihong Kuang,Zhiyun Jia,John A. Sweeney,Qiyong Gong,Xiaoqi Huang
出处
期刊:British Journal of Psychiatry [Royal College of Psychiatrists]
卷期号:219 (5): 606-613 被引量:44
标识
DOI:10.1192/bjp.2021.103
摘要

Background Major depressive disorder (MDD) is a clinically and biologically heterogeneous syndrome. Identifying discrete subtypes of illness with distinguishing neurobiological substrates and clinical features is a promising strategy for guiding personalised therapeutics. Aims This study aimed to identify depression subtypes with correlated patterns of functional network connectivity and clinical symptoms by clustering patients according to a weighted linear combination of both features in a relatively large, medication-naïve depression sample. Method We recruited 115 medication-naïve adults with MDD and 129 matched healthy controls, and evaluated all participants with magnetic resonance imaging. We used regularised canonical correlation analysis to identify component mapping relationships between functional network connectivity and symptom profiles, and K -means clustering was used to define distinct subtypes of patients. Results Two subtypes of MDD were identified: insomnia-dominated subtype 1 and anhedonia-dominated subtype 2. Subtype 1 was characterised by abnormal hyperconnectivity within the ventral attention network and sleep maintenance insomnia. Subtype 2 was characterised by abnormal hypoconnectivity in the subcortical and dorsal attention networks, and prominent anhedonia symptoms. Conclusions Our study identified two distinct subtypes of patients with specific neurobiological and clinical symptom profiles. These findings advance understanding of the biological and clinical heterogeneity of MDD, offering a pathway for defining categorical subtypes of illness via consideration of both biological and clinical features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
田20202021完成签到,获得积分10
刚刚
Www发布了新的文献求助10
刚刚
背后玉米发布了新的文献求助10
1秒前
1秒前
蓝璃完成签到,获得积分10
1秒前
香蕉秋寒完成签到,获得积分10
2秒前
韦映菡发布了新的文献求助10
2秒前
晚睡的芒果完成签到,获得积分10
2秒前
汉堡包应助GG采纳,获得10
4秒前
小冉发布了新的文献求助10
4秒前
神勇涫发布了新的文献求助10
4秒前
ppboyindream发布了新的文献求助10
5秒前
zj发布了新的文献求助10
6秒前
小夜发布了新的文献求助10
7秒前
8秒前
研友_VZG7GZ应助嘿嘿采纳,获得10
8秒前
wanci应助you采纳,获得10
8秒前
petli完成签到,获得积分10
8秒前
FashionBoy应助我能读懂文献采纳,获得10
9秒前
mumu完成签到,获得积分10
9秒前
Akim应助薛定谔的猫采纳,获得10
9秒前
QQ发布了新的文献求助20
10秒前
CodeCraft应助汪哈七采纳,获得10
10秒前
10秒前
10秒前
ppboyindream完成签到,获得积分10
10秒前
11秒前
山橘月发布了新的文献求助10
11秒前
凝凝完成签到,获得积分10
11秒前
Emma应助vuuu采纳,获得10
12秒前
橙子陈完成签到,获得积分20
12秒前
陈少华发布了新的文献求助10
12秒前
搜集达人应助Re采纳,获得10
12秒前
13秒前
丘比特应助mumu采纳,获得10
13秒前
背后玉米完成签到,获得积分20
14秒前
hz发布了新的文献求助10
14秒前
15秒前
15秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3169616
求助须知:如何正确求助?哪些是违规求助? 2820792
关于积分的说明 7932194
捐赠科研通 2481126
什么是DOI,文献DOI怎么找? 1321678
科研通“疑难数据库(出版商)”最低求助积分说明 633317
版权声明 602541