Data-driven clustering differentiates subtypes of major depressive disorder with distinct brain connectivity and symptom features

无血性 重性抑郁障碍 功能磁共振成像 心理学 萧条(经济学) 医学 神经科学 精神科 临床心理学 心情 精神分裂症(面向对象编程) 经济 宏观经济学
作者
Yanlin Wang,Shi Tang,Lianqing Zhang,Xuan Bu,Lu Lu,Hailong Li,Yingxue Gao,Xinyu Hu,Weihong Kuang,Zhiyun Jia,John A. Sweeney,Qiyong Gong,Xiaoqi Huang
出处
期刊:British Journal of Psychiatry [Royal College of Psychiatrists]
卷期号:219 (5): 606-613 被引量:44
标识
DOI:10.1192/bjp.2021.103
摘要

Background Major depressive disorder (MDD) is a clinically and biologically heterogeneous syndrome. Identifying discrete subtypes of illness with distinguishing neurobiological substrates and clinical features is a promising strategy for guiding personalised therapeutics. Aims This study aimed to identify depression subtypes with correlated patterns of functional network connectivity and clinical symptoms by clustering patients according to a weighted linear combination of both features in a relatively large, medication-naïve depression sample. Method We recruited 115 medication-naïve adults with MDD and 129 matched healthy controls, and evaluated all participants with magnetic resonance imaging. We used regularised canonical correlation analysis to identify component mapping relationships between functional network connectivity and symptom profiles, and K -means clustering was used to define distinct subtypes of patients. Results Two subtypes of MDD were identified: insomnia-dominated subtype 1 and anhedonia-dominated subtype 2. Subtype 1 was characterised by abnormal hyperconnectivity within the ventral attention network and sleep maintenance insomnia. Subtype 2 was characterised by abnormal hypoconnectivity in the subcortical and dorsal attention networks, and prominent anhedonia symptoms. Conclusions Our study identified two distinct subtypes of patients with specific neurobiological and clinical symptom profiles. These findings advance understanding of the biological and clinical heterogeneity of MDD, offering a pathway for defining categorical subtypes of illness via consideration of both biological and clinical features.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
安卓锋发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
2秒前
小小邹发布了新的文献求助10
2秒前
悦铭完成签到,获得积分10
2秒前
2秒前
非而者厚发布了新的文献求助10
2秒前
2秒前
ChemNiko发布了新的文献求助10
2秒前
chie发布了新的文献求助10
3秒前
非而者厚发布了新的文献求助10
3秒前
非而者厚发布了新的文献求助10
3秒前
know发布了新的文献求助10
3秒前
非而者厚发布了新的文献求助50
3秒前
非而者厚发布了新的文献求助10
4秒前
非而者厚发布了新的文献求助10
4秒前
非而者厚发布了新的文献求助10
4秒前
无题完成签到,获得积分10
4秒前
非而者厚发布了新的文献求助10
4秒前
非而者厚发布了新的文献求助10
4秒前
Lucas应助qinqinwy采纳,获得10
4秒前
非而者厚发布了新的文献求助10
4秒前
非而者厚发布了新的文献求助10
4秒前
三点半完成签到,获得积分10
4秒前
非而者厚发布了新的文献求助10
4秒前
非而者厚发布了新的文献求助10
4秒前
非而者厚发布了新的文献求助10
4秒前
留白完成签到,获得积分10
4秒前
非而者厚发布了新的文献求助10
4秒前
科研通AI2S应助Iridesent0v0采纳,获得10
4秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620874
求助须知:如何正确求助?哪些是违规求助? 4705521
关于积分的说明 14932362
捐赠科研通 4763666
什么是DOI,文献DOI怎么找? 2551356
邀请新用户注册赠送积分活动 1513817
关于科研通互助平台的介绍 1474715