N2pc
工作记忆
注意力控制
认知心理学
心理学
分散注意力
视觉空间注意
脑电图
选择性注意
认知
感知
视觉感受
神经科学
作者
Nicole Hakim,Tobias Feldmann‐Wüstefeld,Edward Awh,Edward K. Vogel
出处
期刊:Cerebral Cortex
[Oxford University Press]
日期:2021-01-14
卷期号:31 (7): 3323-3337
被引量:31
标识
DOI:10.1093/cercor/bhab013
摘要
Abstract Visual working memory (WM) must maintain relevant information, despite the constant influx of both relevant and irrelevant information. Attentional control mechanisms help determine which of this new information gets access to our capacity-limited WM system. Previous work has treated attentional control as a monolithic process—either distractors capture attention or they are suppressed. Here, we provide evidence that attentional capture may instead be broken down into at least two distinct subcomponent processes: (1) Spatial capture, which refers to when spatial attention shifts towards the location of irrelevant stimuli and (2) item-based capture, which refers to when item-based WM representations of irrelevant stimuli are formed. To dissociate these two subcomponent processes of attentional capture, we utilized a series of electroencephalography components that track WM maintenance (contralateral delay activity), suppression (distractor positivity), item individuation (N2pc), and spatial attention (lateralized alpha power). We show that new, relevant information (i.e., a task-relevant distractor) triggers both spatial and item-based capture. Irrelevant distractors, however, only trigger spatial capture from which ongoing WM representations can recover more easily. This fractionation of attentional capture into distinct subcomponent processes provides a refined framework for understanding how distracting stimuli affect attention and WM.
科研通智能强力驱动
Strongly Powered by AbleSci AI