亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

iFlowGAN: An Invertible Flow-based Generative Adversarial Network For Unsupervised Image-to-Image Translation

李普希茨连续性 图像(数学) 可逆矩阵 翻译(生物学) 计算机科学 算法 人工神经网络 图像翻译 数学 人工智能 理论计算机科学 模式识别(心理学) 纯数学 基因 信使核糖核酸 生物化学 化学
作者
Longquan Dai,Jinhui Tang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:15
标识
DOI:10.1109/tpami.2021.3062849
摘要

We propose iFlowGAN that learns an invertible flow (a sequence of invertible mappings) via adversarial learning and exploit it to transform a source distribution into a target distribution for unsupervised image-to-image translation. Existing GAN-based generative model such as CycleGAN [1], StarGAN [2], AGGAN [3] and CyCADA [4] needs to learn a highly under-constraint forward mapping F: X → Y from a source domain X to a target domain Y. Researchers do this by assuming there is a backward mapping B: Y → X such that x and y are fixed points of the composite functions B °F and F °B. Inspired by zero-order reverse filtering [5], we (1) understand F via contraction mappings on a metric space; (2) provide a simple yet effective algorithm to present B via the parameters of F in light of Banach fixed point theorem; (3) provide a Lipschitz-regularized network which indicates a general approach to compose the inverse for arbitrary Lipschitz-regularized networks via Banach fixed point theorem. This network is useful for image-to-image translation tasks because it could save the memory for the weights of B. Although memory can also be saved by directly coupling the weights of the forward and backward mappings, the performance of the image-to-image translation network degrades significantly. This explains why current GAN-based generative models including CycleGAN must take different parameters to compose the forward and backward mappings instead of employing the same weights to build both mappings. Taking advantage of the Lipschitz-regularized network, we not only build iFlowGAN to solve the redundancy shortcoming of CycleGAN but also assemble the corresponding iFlowGAN versions of StarGAN, AGGAN and CyCADA without breaking their network architectures. Extensive experiments show that the iFlowGAN version could produce comparable results of the original implementation while saving half parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
18秒前
36秒前
36秒前
天天快乐应助科研通管家采纳,获得10
37秒前
汉堡包应助桃子e采纳,获得10
44秒前
53秒前
桃子e发布了新的文献求助10
56秒前
伊伊伊伊一一一完成签到,获得积分10
1分钟前
ding应助scn666采纳,获得10
1分钟前
思源应助桃子e采纳,获得10
1分钟前
欣喜的香菱完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
桃子e发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
难过忆山发布了新的文献求助10
2分钟前
英姑应助Zz采纳,获得10
2分钟前
所所应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
hq完成签到 ,获得积分10
3分钟前
3分钟前
poki完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
充电宝应助科研通管家采纳,获得10
4分钟前
4分钟前
天天快乐应助Fluoxtine采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
twk发布了新的文献求助10
5分钟前
5分钟前
研友_VZG7GZ应助粗暴的坤采纳,获得10
5分钟前
6分钟前
科研通AI6.1应助jyy采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788708
求助须知:如何正确求助?哪些是违规求助? 5710788
关于积分的说明 15473823
捐赠科研通 4916686
什么是DOI,文献DOI怎么找? 2646520
邀请新用户注册赠送积分活动 1594203
关于科研通互助平台的介绍 1548617