iFlowGAN: An Invertible Flow-based Generative Adversarial Network For Unsupervised Image-to-Image Translation

李普希茨连续性 图像(数学) 可逆矩阵 翻译(生物学) 计算机科学 算法 人工神经网络 图像翻译 数学 人工智能 理论计算机科学 模式识别(心理学) 纯数学 基因 信使核糖核酸 生物化学 化学
作者
Longquan Dai,Jinhui Tang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-1 被引量:5
标识
DOI:10.1109/tpami.2021.3062849
摘要

We propose iFlowGAN that learns an invertible flow (a sequence of invertible mappings) via adversarial learning and exploit it to transform a source distribution into a target distribution for unsupervised image-to-image translation. Existing GAN-based generative model such as CycleGAN [1], StarGAN [2], AGGAN [3] and CyCADA [4] needs to learn a highly under-constraint forward mapping F: X → Y from a source domain X to a target domain Y. Researchers do this by assuming there is a backward mapping B: Y → X such that x and y are fixed points of the composite functions B °F and F °B. Inspired by zero-order reverse filtering [5], we (1) understand F via contraction mappings on a metric space; (2) provide a simple yet effective algorithm to present B via the parameters of F in light of Banach fixed point theorem; (3) provide a Lipschitz-regularized network which indicates a general approach to compose the inverse for arbitrary Lipschitz-regularized networks via Banach fixed point theorem. This network is useful for image-to-image translation tasks because it could save the memory for the weights of B. Although memory can also be saved by directly coupling the weights of the forward and backward mappings, the performance of the image-to-image translation network degrades significantly. This explains why current GAN-based generative models including CycleGAN must take different parameters to compose the forward and backward mappings instead of employing the same weights to build both mappings. Taking advantage of the Lipschitz-regularized network, we not only build iFlowGAN to solve the redundancy shortcoming of CycleGAN but also assemble the corresponding iFlowGAN versions of StarGAN, AGGAN and CyCADA without breaking their network architectures. Extensive experiments show that the iFlowGAN version could produce comparable results of the original implementation while saving half parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助莉芳采纳,获得10
刚刚
1秒前
笨笨松发布了新的文献求助10
2秒前
赢一把去睡觉完成签到,获得积分10
3秒前
善学以致用应助沉默凡英采纳,获得10
4秒前
elysia完成签到,获得积分10
5秒前
如意2023发布了新的文献求助10
5秒前
桐桐应助modesty采纳,获得10
5秒前
6秒前
6秒前
8秒前
9秒前
10秒前
11秒前
aaaaaa发布了新的文献求助10
11秒前
11秒前
xuan完成签到,获得积分10
12秒前
兜有米发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
goodgay133发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
思源应助aaaaaa采纳,获得10
16秒前
江月年发布了新的文献求助10
17秒前
陈冲冲发布了新的文献求助10
18秒前
眰恦完成签到 ,获得积分10
18秒前
18秒前
modesty发布了新的文献求助10
18秒前
锐123发布了新的文献求助10
19秒前
桐桐应助zby2采纳,获得10
19秒前
19秒前
20秒前
子车万仇发布了新的文献求助10
21秒前
兜有米完成签到,获得积分10
21秒前
21秒前
幽默飞雪完成签到 ,获得积分10
23秒前
桐桐应助陈冲冲采纳,获得10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967156
求助须知:如何正确求助?哪些是违规求助? 3512491
关于积分的说明 11163601
捐赠科研通 3247421
什么是DOI,文献DOI怎么找? 1793805
邀请新用户注册赠送积分活动 874615
科研通“疑难数据库(出版商)”最低求助积分说明 804468