Recapitulating the Binding Affinity of Nrf2 for KEAP1 in a Cyclic Heptapeptide, Guided by NMR, X-ray Crystallography, and Machine Learning

化学 结晶学 立体化学 X射线 核物理学 物理
作者
Paula C. Ortet,Samantha N. Muellers,Lauren A. Viarengo‐Baker,Kristina Streu,Blair R. Szymczyna,Aaron B. Beeler,Karen N. Allen,Adrian Whitty
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:143 (10): 3779-3793 被引量:30
标识
DOI:10.1021/jacs.0c09799
摘要

Macrocycles, including macrocyclic peptides, have shown promise for targeting challenging protein–protein interactions (PPIs). One PPI of high interest is between Kelch-like ECH-Associated Protein-1 (KEAP1) and Nuclear Factor (Erythroid-derived 2)-like 2 (Nrf2). Guided by X-ray crystallography, NMR, modeling, and machine learning, we show that the full 20 nM binding affinity of Nrf2 for KEAP1 can be recapitulated in a cyclic 7-mer peptide, c[(D)-β-homoAla-DPETGE]. This compound was identified from the Nrf2-derived linear peptide GDEETGE (KD = 4.3 μM) solely by optimizing the conformation of the cyclic compound, without changing any KEAP1 interacting residue. X-ray crystal structures were determined for each linear and cyclic peptide variant bound to KEAP1. Despite large variations in affinity, no obvious differences in the conformation of the peptide binding residues or in the interactions they made with KEAP1 were observed. However, analysis of the X-ray structures by machine learning showed that locations of strain in the bound ligand could be identified through patterns of subangstrom distortions from the geometry observed for unstrained linear peptides. We show that optimizing the cyclic peptide affinity was driven partly through conformational preorganization associated with a proline substitution at position 78 and with the geometry of the noninteracting residue Asp77 and partly by decreasing strain in the ETGE motif itself. This approach may have utility in dissecting the trade-off between conformational preorganization and strain in other ligand–receptor systems. We also identify a pair of conserved hydrophobic residues flanking the core DxETGE motif which play a conformational role in facilitating the high-affinity binding of Nrf2 to KEAP1.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
受伤的无心完成签到 ,获得积分10
刚刚
平淡从霜发布了新的文献求助10
刚刚
4秒前
zxh完成签到,获得积分10
7秒前
7秒前
1111111发布了新的文献求助10
9秒前
淘气乌龙茶完成签到 ,获得积分10
9秒前
SciGPT应助危机的阁采纳,获得10
11秒前
生动的若之完成签到 ,获得积分10
11秒前
冷酷莫言发布了新的文献求助10
13秒前
15秒前
lucky完成签到 ,获得积分10
16秒前
16秒前
17秒前
zhongyinanke完成签到 ,获得积分10
18秒前
666发布了新的文献求助10
20秒前
李先生完成签到 ,获得积分10
23秒前
古藤完成签到 ,获得积分10
24秒前
风中的碧玉完成签到,获得积分10
25秒前
nini完成签到 ,获得积分10
26秒前
506407完成签到,获得积分10
27秒前
蓝天发布了新的文献求助10
28秒前
科研通AI6应助加油采纳,获得10
29秒前
kroll发布了新的文献求助10
29秒前
LL完成签到 ,获得积分10
30秒前
31秒前
31秒前
Carolina完成签到,获得积分10
32秒前
繁荣的立果完成签到,获得积分10
37秒前
危机的阁发布了新的文献求助10
38秒前
晓汁完成签到 ,获得积分10
41秒前
41秒前
共享精神应助白天乐夜雨采纳,获得10
42秒前
小巧寻桃发布了新的文献求助10
46秒前
交大市长完成签到,获得积分10
47秒前
今后应助刘芋叶采纳,获得10
49秒前
香蕉诗蕊应助加油采纳,获得10
50秒前
琦琦完成签到 ,获得积分10
50秒前
踏实的兔子完成签到 ,获得积分10
51秒前
搜集达人应助LHR采纳,获得10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560490
求助须知:如何正确求助?哪些是违规求助? 4645747
关于积分的说明 14676028
捐赠科研通 4586936
什么是DOI,文献DOI怎么找? 2516635
邀请新用户注册赠送积分活动 1490182
关于科研通互助平台的介绍 1461055