Recapitulating the Binding Affinity of Nrf2 for KEAP1 in a Cyclic Heptapeptide, Guided by NMR, X-ray Crystallography, and Machine Learning

化学 结晶学 立体化学 X射线 核物理学 物理
作者
Paula C. Ortet,Samantha N. Muellers,Lauren A. Viarengo‐Baker,Kristina Streu,Blair R. Szymczyna,Aaron B. Beeler,Karen N. Allen,Adrian Whitty
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:143 (10): 3779-3793 被引量:30
标识
DOI:10.1021/jacs.0c09799
摘要

Macrocycles, including macrocyclic peptides, have shown promise for targeting challenging protein–protein interactions (PPIs). One PPI of high interest is between Kelch-like ECH-Associated Protein-1 (KEAP1) and Nuclear Factor (Erythroid-derived 2)-like 2 (Nrf2). Guided by X-ray crystallography, NMR, modeling, and machine learning, we show that the full 20 nM binding affinity of Nrf2 for KEAP1 can be recapitulated in a cyclic 7-mer peptide, c[(D)-β-homoAla-DPETGE]. This compound was identified from the Nrf2-derived linear peptide GDEETGE (KD = 4.3 μM) solely by optimizing the conformation of the cyclic compound, without changing any KEAP1 interacting residue. X-ray crystal structures were determined for each linear and cyclic peptide variant bound to KEAP1. Despite large variations in affinity, no obvious differences in the conformation of the peptide binding residues or in the interactions they made with KEAP1 were observed. However, analysis of the X-ray structures by machine learning showed that locations of strain in the bound ligand could be identified through patterns of subangstrom distortions from the geometry observed for unstrained linear peptides. We show that optimizing the cyclic peptide affinity was driven partly through conformational preorganization associated with a proline substitution at position 78 and with the geometry of the noninteracting residue Asp77 and partly by decreasing strain in the ETGE motif itself. This approach may have utility in dissecting the trade-off between conformational preorganization and strain in other ligand–receptor systems. We also identify a pair of conserved hydrophobic residues flanking the core DxETGE motif which play a conformational role in facilitating the high-affinity binding of Nrf2 to KEAP1.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
David发布了新的文献求助10
刚刚
白蹄乌发布了新的文献求助10
刚刚
不回首发布了新的文献求助10
1秒前
陌路完成签到,获得积分10
2秒前
2秒前
大模型应助找不着北采纳,获得10
2秒前
哲999发布了新的文献求助10
2秒前
wong8384完成签到,获得积分10
2秒前
idrees发布了新的文献求助30
2秒前
高佳升完成签到,获得积分10
2秒前
3秒前
tianqi发布了新的文献求助10
3秒前
SunnyZhou完成签到,获得积分10
3秒前
千早爱音完成签到,获得积分10
3秒前
VDC发布了新的文献求助10
4秒前
Lucas应助爱吃巧乐兹采纳,获得10
4秒前
犹豫酸奶发布了新的文献求助10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
shhoing应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
需要论文应助科研通管家采纳,获得10
5秒前
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
luhuitou应助科研通管家采纳,获得10
6秒前
今后应助科研通管家采纳,获得10
6秒前
敬之发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545786
求助须知:如何正确求助?哪些是违规求助? 4631840
关于积分的说明 14622683
捐赠科研通 4573553
什么是DOI,文献DOI怎么找? 2507605
邀请新用户注册赠送积分活动 1484320
关于科研通互助平台的介绍 1455594