Recapitulating the Binding Affinity of Nrf2 for KEAP1 in a Cyclic Heptapeptide, Guided by NMR, X-ray Crystallography, and Machine Learning

化学 结晶学 立体化学 X射线 核物理学 物理
作者
Paula C. Ortet,Samantha N. Muellers,Lauren A. Viarengo-Baker,Kristina Streu,Blair R. Szymczyna,Aaron B. Beeler,Karen N. Allen,Adrian Whitty
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:143 (10): 3779-3793 被引量:26
标识
DOI:10.1021/jacs.0c09799
摘要

Macrocycles, including macrocyclic peptides, have shown promise for targeting challenging protein–protein interactions (PPIs). One PPI of high interest is between Kelch-like ECH-Associated Protein-1 (KEAP1) and Nuclear Factor (Erythroid-derived 2)-like 2 (Nrf2). Guided by X-ray crystallography, NMR, modeling, and machine learning, we show that the full 20 nM binding affinity of Nrf2 for KEAP1 can be recapitulated in a cyclic 7-mer peptide, c[(D)-β-homoAla-DPETGE]. This compound was identified from the Nrf2-derived linear peptide GDEETGE (KD = 4.3 μM) solely by optimizing the conformation of the cyclic compound, without changing any KEAP1 interacting residue. X-ray crystal structures were determined for each linear and cyclic peptide variant bound to KEAP1. Despite large variations in affinity, no obvious differences in the conformation of the peptide binding residues or in the interactions they made with KEAP1 were observed. However, analysis of the X-ray structures by machine learning showed that locations of strain in the bound ligand could be identified through patterns of subangstrom distortions from the geometry observed for unstrained linear peptides. We show that optimizing the cyclic peptide affinity was driven partly through conformational preorganization associated with a proline substitution at position 78 and with the geometry of the noninteracting residue Asp77 and partly by decreasing strain in the ETGE motif itself. This approach may have utility in dissecting the trade-off between conformational preorganization and strain in other ligand–receptor systems. We also identify a pair of conserved hydrophobic residues flanking the core DxETGE motif which play a conformational role in facilitating the high-affinity binding of Nrf2 to KEAP1.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助tfy采纳,获得10
2秒前
良辰应助李大仁采纳,获得10
2秒前
3秒前
3秒前
monly应助ww采纳,获得10
4秒前
4秒前
MedicoYang发布了新的文献求助30
4秒前
隐形曼青应助电催化丁真采纳,获得10
4秒前
丁明淘发布了新的文献求助10
5秒前
6秒前
天润佳苑完成签到,获得积分10
6秒前
6秒前
7秒前
田様应助diraczh采纳,获得10
8秒前
8秒前
漫漫楚威风完成签到,获得积分10
8秒前
无脚鸟完成签到,获得积分10
9秒前
yar应助MedicoYang采纳,获得10
10秒前
多多发布了新的文献求助10
10秒前
Chem应助MedicoYang采纳,获得20
10秒前
Lycerdoctor发布了新的文献求助10
10秒前
10秒前
良辰应助李大仁采纳,获得10
10秒前
11秒前
调研昵称发布了新的文献求助10
11秒前
12秒前
12秒前
13秒前
良辰应助Evan采纳,获得10
13秒前
虚幻寄文完成签到 ,获得积分10
14秒前
jijahui发布了新的文献求助10
14秒前
liu发布了新的文献求助10
15秒前
16秒前
朱子发布了新的文献求助10
17秒前
良辰应助李大仁采纳,获得10
18秒前
不将就1345应助ww采纳,获得10
19秒前
Toxic完成签到 ,获得积分10
20秒前
自由从筠完成签到 ,获得积分10
20秒前
20秒前
标致大开完成签到 ,获得积分10
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306986
求助须知:如何正确求助?哪些是违规求助? 2940825
关于积分的说明 8498822
捐赠科研通 2614965
什么是DOI,文献DOI怎么找? 1428599
科研通“疑难数据库(出版商)”最低求助积分说明 663451
邀请新用户注册赠送积分活动 648304