Machine learning–based random forest for predicting decreased quality of life in thyroid cancer patients after thyroidectomy

医学 甲状腺切除术 生活质量(医疗保健) 甲状腺癌 癌症 前瞻性队列研究 甲状腺 内科学 外科 物理疗法 护理部
作者
Liu Y,Jian Jin,Yun Jiang Liu
出处
期刊:Supportive Care in Cancer [Springer Science+Business Media]
卷期号:30 (3): 2507-2513 被引量:13
标识
DOI:10.1007/s00520-021-06657-0
摘要

Decreased quality of life (QoL) in thyroid cancer patients after thyroidectomy is a common, but there is a lack of predictive methods for decreased QoL. This study aimed to construct a machine learning-based random forest for predicting decreased QoL in thyroid cancer patients 3 months after thyroidectomy.Two hundred and eighty-six thyroid cancer patients after thyroidectomy were enrolled in this prospective cross-sectional study from November 2018 to June 2019, and were randomly assigned to training and validation cohorts at a ratio of 7:3. The European Organization for Research and Treatment of Cancer quality of life questionnaire version 3 (EORTC QLQ-C30) questionnaire was used to assess the QoL 3 months after thyroidectomy, and decreased QoL was defined as EORTC QLQ-C30 < 60 points. The random forest model was constructed for predicting decreased QoL in thyroid cancer patients after thyroidectomy.The mean QoL 3 months after thyroidectomy was 65.93 ± 9.00 with 21.33% (61/286) decreased QoL. The main manifestation is fatigue in symptom scales and social functioning dysfunction in functional scales. The top seven most important indices affecting QoL were clinical stage, marital status, histological type, age, nerve injury symptom, economic income and surgery type. For random forest prediction model, the areas under the curve in the training and validation courts were 0.834 and 0.897, respectively.The present study demonstrated that random forest model for predicting decreased QoL in thyroid cancer patients 3 months after thyroidectomy displayed relatively high accuracy. These findings should be applied clinically to optimise health care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助Roses采纳,获得10
1秒前
CAOHOU应助余航采纳,获得10
1秒前
Lsyii发布了新的文献求助10
1秒前
爆米花应助Iceberg采纳,获得10
2秒前
认真的傲柏完成签到,获得积分20
10秒前
冷傲半邪发布了新的文献求助60
10秒前
Lsyii完成签到,获得积分10
11秒前
13秒前
一只鱼完成签到,获得积分10
14秒前
16秒前
完美世界应助哈哈哈嗝采纳,获得10
19秒前
NexusExplorer应助糟糕的夏云采纳,获得10
19秒前
19秒前
22秒前
桐桐应助皓月星辰采纳,获得10
23秒前
高大田应助韩凡采纳,获得10
24秒前
24秒前
一只鱼发布了新的文献求助10
24秒前
DrDaiJune完成签到,获得积分10
25秒前
李健应助开心跳跳糖采纳,获得10
26秒前
JQM发布了新的文献求助10
26秒前
27秒前
郑zz完成签到,获得积分20
27秒前
核桃发布了新的文献求助10
29秒前
科研公主完成签到,获得积分10
29秒前
。。。完成签到,获得积分10
30秒前
30秒前
31秒前
郑zz发布了新的文献求助10
31秒前
wyz发布了新的文献求助10
32秒前
33秒前
今天心情好朋友完成签到 ,获得积分10
34秒前
34秒前
哈哈哈嗝发布了新的文献求助10
35秒前
36秒前
美丽小蕾完成签到,获得积分20
37秒前
ding应助蜗牛星星采纳,获得10
38秒前
大模型应助Self-made采纳,获得10
38秒前
38秒前
情怀应助alvin采纳,获得10
40秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962406
求助须知:如何正确求助?哪些是违规求助? 3508495
关于积分的说明 11141261
捐赠科研通 3241177
什么是DOI,文献DOI怎么找? 1791399
邀请新用户注册赠送积分活动 872861
科研通“疑难数据库(出版商)”最低求助积分说明 803396