Machine learning–based random forest for predicting decreased quality of life in thyroid cancer patients after thyroidectomy

医学 甲状腺切除术 生活质量(医疗保健) 甲状腺癌 癌症 前瞻性队列研究 甲状腺 内科学 外科 物理疗法 护理部
作者
Liu Y,Jian Jin,Yun Jiang Liu
出处
期刊:Supportive Care in Cancer [Springer Nature]
卷期号:30 (3): 2507-2513 被引量:13
标识
DOI:10.1007/s00520-021-06657-0
摘要

Decreased quality of life (QoL) in thyroid cancer patients after thyroidectomy is a common, but there is a lack of predictive methods for decreased QoL. This study aimed to construct a machine learning-based random forest for predicting decreased QoL in thyroid cancer patients 3 months after thyroidectomy.Two hundred and eighty-six thyroid cancer patients after thyroidectomy were enrolled in this prospective cross-sectional study from November 2018 to June 2019, and were randomly assigned to training and validation cohorts at a ratio of 7:3. The European Organization for Research and Treatment of Cancer quality of life questionnaire version 3 (EORTC QLQ-C30) questionnaire was used to assess the QoL 3 months after thyroidectomy, and decreased QoL was defined as EORTC QLQ-C30 < 60 points. The random forest model was constructed for predicting decreased QoL in thyroid cancer patients after thyroidectomy.The mean QoL 3 months after thyroidectomy was 65.93 ± 9.00 with 21.33% (61/286) decreased QoL. The main manifestation is fatigue in symptom scales and social functioning dysfunction in functional scales. The top seven most important indices affecting QoL were clinical stage, marital status, histological type, age, nerve injury symptom, economic income and surgery type. For random forest prediction model, the areas under the curve in the training and validation courts were 0.834 and 0.897, respectively.The present study demonstrated that random forest model for predicting decreased QoL in thyroid cancer patients 3 months after thyroidectomy displayed relatively high accuracy. These findings should be applied clinically to optimise health care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
R11111发布了新的文献求助10
1秒前
wanci应助本杰明巴克采纳,获得10
1秒前
现实的映波完成签到,获得积分10
1秒前
musejie完成签到,获得积分10
2秒前
2秒前
彭于彦祖应助英勇MESSI采纳,获得30
2秒前
thanhmanhp发布了新的文献求助10
2秒前
看风景的小熊完成签到,获得积分10
2秒前
3秒前
永远发布了新的文献求助10
3秒前
饱满的菲鹰完成签到,获得积分10
3秒前
3秒前
betyby发布了新的文献求助10
4秒前
隐形曼青应助舒适亦凝采纳,获得10
4秒前
香蕉乐菱发布了新的文献求助10
4秒前
尛破孩完成签到,获得积分10
4秒前
4秒前
香蕉觅云应助Zcool采纳,获得10
4秒前
by08119发布了新的文献求助30
5秒前
幽默三娘完成签到,获得积分10
5秒前
5秒前
zean完成签到,获得积分20
5秒前
脑洞疼应助冲冲冲!采纳,获得10
6秒前
Akim应助ziluolan007采纳,获得10
6秒前
所所应助联合工程采纳,获得10
7秒前
大个应助27申985博士采纳,获得10
8秒前
zmk完成签到,获得积分10
8秒前
牧析山发布了新的文献求助10
8秒前
Keming完成签到,获得积分10
8秒前
789发布了新的文献求助10
9秒前
大力元霜发布了新的文献求助10
9秒前
RC完成签到,获得积分10
10秒前
11秒前
Ssyong发布了新的文献求助10
11秒前
nano_yan发布了新的文献求助10
12秒前
13秒前
didi完成签到,获得积分10
13秒前
13秒前
skylee9527发布了新的文献求助10
14秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257848
求助须知:如何正确求助?哪些是违规求助? 2899735
关于积分的说明 8307278
捐赠科研通 2568985
什么是DOI,文献DOI怎么找? 1395394
科研通“疑难数据库(出版商)”最低求助积分说明 653074
邀请新用户注册赠送积分活动 630933