Magnetic Resonance Fingerprinting for Preoperative Meningioma Consistency Prediction

接收机工作特性 磁共振成像 磁共振弥散成像 脑膜瘤 有效扩散系数 医学 手术计划 核医学 软组织 放射科 一致性(知识库) 计算机科学 人工智能 内科学
作者
Yan Bai,Rui Zhang,Xianchang Zhang,Xinhui Wang,Mathias Nittka,Gregor Koerzdoerfer,Qiyong Gong,Meiyun Wang
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:29 (8): e157-e165 被引量:10
标识
DOI:10.1016/j.acra.2021.09.008
摘要

Preoperative meningioma consistency prediction is highly beneficial for surgical planning and prognostication. We aimed to use magnetic resonance fingerprinting (MRF)-derived T1 and T2 values to preoperatively predict meningioma consistency.A total of 51 patients with meningiomas were enrolled in this study. MRF, T1-weighted imaging, T2-weighted imaging, and diffusion-weighted imaging were performed in all patients before surgery using a 3T MRI scanner. MRF-derived T1 and T2 values, T1-weightd and T2-weighted signal intensities, as well as apparent diffusion coefficient value yield from diffusion-weighted imaging were compared between the soft, moderate and hard meningiomas. Receiver operating characteristic curve analyses were used to determine the diagnostic performance of T1, T2 value, and a combination of T1 and T2 values.After Bonferroni corrections, quantitative T1 and T2 values yielded from MRF were significantly different between the soft, moderate and hard meningiomas (all p < 0.05). T2 signal intensity was significantly different between the soft and hard, soft and moderate meningiomas (both p < 0.05), whereas was not significantly different between the moderate and hard meningiomas. However, T1 signal intensity and apparent diffusion coefficient value had no significant differences between the soft, moderate and hard meningiomas (all p > 0.05). The combination of T1 and T2 values had greater areas under receiver operating characteristic curve curves compared to individual T1 or T2 value.MRF may help to preoperatively differentiate between the soft, moderate and hard meningiomas and may be useful in guiding the surgical planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
娜娜liuna完成签到,获得积分10
2秒前
huihui完成签到,获得积分10
2秒前
张zhang完成签到,获得积分10
3秒前
orixero应助wyt采纳,获得10
3秒前
科研通AI6应助huk采纳,获得10
3秒前
3秒前
3秒前
科研通AI5应助1234采纳,获得10
4秒前
zwf123完成签到,获得积分10
4秒前
z猪猪发布了新的文献求助10
6秒前
加油加油gogogo完成签到,获得积分10
6秒前
zwf123发布了新的文献求助10
7秒前
wayne绮完成签到 ,获得积分10
8秒前
无花果应助Smilingrock采纳,获得10
8秒前
小羊发布了新的文献求助200
8秒前
8秒前
恣睢发布了新的文献求助30
9秒前
10秒前
华华爸发布了新的文献求助10
10秒前
ringwave1988完成签到,获得积分10
10秒前
SciGPT应助颜云尔采纳,获得10
11秒前
Dr_Zhan应助加油加油gogogo采纳,获得10
13秒前
岁月间完成签到,获得积分10
13秒前
15秒前
15秒前
彭冬华完成签到 ,获得积分20
16秒前
浮游应助哈哈哈采纳,获得10
16秒前
17秒前
17秒前
一二三四完成签到,获得积分10
17秒前
小蘑菇应助科研通管家采纳,获得10
18秒前
华仔应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
星辰大海应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得30
18秒前
浮游应助科研通管家采纳,获得10
18秒前
小马甲应助科研通管家采纳,获得10
18秒前
完美世界应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4601983
求助须知:如何正确求助?哪些是违规求助? 4011438
关于积分的说明 12419208
捐赠科研通 3691523
什么是DOI,文献DOI怎么找? 2035123
邀请新用户注册赠送积分活动 1068423
科研通“疑难数据库(出版商)”最低求助积分说明 952869