Magnetic Resonance Fingerprinting for Preoperative Meningioma Consistency Prediction

接收机工作特性 磁共振成像 磁共振弥散成像 脑膜瘤 有效扩散系数 医学 手术计划 核医学 软组织 放射科 一致性(知识库) 计算机科学 人工智能 内科学
作者
Yan Bai,Rui Zhang,Xianchang Zhang,Xinhui Wang,Mathias Nittka,Gregor Koerzdoerfer,Qiyong Gong,Meiyun Wang
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:29 (8): e157-e165 被引量:10
标识
DOI:10.1016/j.acra.2021.09.008
摘要

Preoperative meningioma consistency prediction is highly beneficial for surgical planning and prognostication. We aimed to use magnetic resonance fingerprinting (MRF)-derived T1 and T2 values to preoperatively predict meningioma consistency.A total of 51 patients with meningiomas were enrolled in this study. MRF, T1-weighted imaging, T2-weighted imaging, and diffusion-weighted imaging were performed in all patients before surgery using a 3T MRI scanner. MRF-derived T1 and T2 values, T1-weightd and T2-weighted signal intensities, as well as apparent diffusion coefficient value yield from diffusion-weighted imaging were compared between the soft, moderate and hard meningiomas. Receiver operating characteristic curve analyses were used to determine the diagnostic performance of T1, T2 value, and a combination of T1 and T2 values.After Bonferroni corrections, quantitative T1 and T2 values yielded from MRF were significantly different between the soft, moderate and hard meningiomas (all p < 0.05). T2 signal intensity was significantly different between the soft and hard, soft and moderate meningiomas (both p < 0.05), whereas was not significantly different between the moderate and hard meningiomas. However, T1 signal intensity and apparent diffusion coefficient value had no significant differences between the soft, moderate and hard meningiomas (all p > 0.05). The combination of T1 and T2 values had greater areas under receiver operating characteristic curve curves compared to individual T1 or T2 value.MRF may help to preoperatively differentiate between the soft, moderate and hard meningiomas and may be useful in guiding the surgical planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1111发布了新的文献求助10
刚刚
1秒前
机智傀斗完成签到,获得积分10
1秒前
善良天抒完成签到 ,获得积分20
1秒前
宇宙中心发布了新的文献求助10
1秒前
小蘑菇应助吕方采纳,获得10
1秒前
夙夙发布了新的文献求助10
2秒前
TP完成签到,获得积分10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
SYLH应助科研通管家采纳,获得20
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得30
3秒前
916应助科研通管家采纳,获得10
3秒前
Bio应助felix采纳,获得50
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
Bio应助科研通管家采纳,获得10
3秒前
GEeZiii发布了新的文献求助10
3秒前
916应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
ED应助科研通管家采纳,获得10
3秒前
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
lucyliu完成签到 ,获得积分10
3秒前
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
SYLH应助科研通管家采纳,获得20
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
NameSL完成签到,获得积分10
5秒前
俏皮的匕完成签到,获得积分10
5秒前
Fonseca发布了新的文献求助10
6秒前
Mollyshimmer完成签到 ,获得积分10
6秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650