亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Variational Few-Shot Learning for Microservice-Oriented Intrusion Detection in Distributed Industrial IoT

计算机科学 入侵检测系统 人工智能 边缘计算 人工神经网络 卷积神经网络 数据挖掘 机器学习 GSM演进的增强数据速率 云计算 操作系统
作者
Wei Liang,Yiyong Hu,Xiaokang Zhou,Yi Pan,Kevin I‐Kai Wang
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (8): 5087-5095 被引量:110
标识
DOI:10.1109/tii.2021.3116085
摘要

Along with the popularity of the Internet of Things (IoT) techniques with several computational paradigms, such as cloud and edge computing, microservice has been viewed as a promising architecture in large-scale application design and deployment. Due to the limited computing ability of edge devices in distributed IoT, only a small scale of data can be used for model training. In addition, most of the machine-learning-based intrusion detection methods are insufficient when dealing with imbalanced dataset under limited computing resources. In this article, we propose an optimized intra/inter-class-structure-based variational few-shot learning (OICS-VFSL) model to overcome a specific out-of-distribution problem in imbalanced learning, and to improve the microservice-oriented intrusion detection in distributed IoT systems. Following a newly designed VFSL framework, an intra/inter-class optimization scheme is developed using reconstructed feature embeddings, in which the intra-class distance is optimized based on the approximation during a variation Bayesian process, while the inter-class distance is optimized based on the maximization of similarities during a feature concatenation process. An intelligent intrusion detection algorithm is, then, introduced to improve the multiclass classification via a nonlinear neural network. Evaluation experiments are conducted using two public datasets to demonstrate the effectiveness of our proposed model, especially in detecting novel attacks with extremely imbalanced data, compared with four baseline methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
量子星尘发布了新的文献求助10
5秒前
12秒前
12秒前
量子星尘发布了新的文献求助10
17秒前
Wei发布了新的文献求助10
18秒前
19秒前
27秒前
batter关注了科研通微信公众号
27秒前
量子星尘发布了新的文献求助10
32秒前
量子星尘发布了新的文献求助10
39秒前
42秒前
44秒前
量子星尘发布了新的文献求助10
48秒前
batter发布了新的文献求助10
51秒前
51秒前
1分钟前
1分钟前
见识到了发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助150
1分钟前
Jasper应助zxw采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Wei发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
欣喜访旋发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
xhuryts完成签到 ,获得积分20
2分钟前
乐乐应助鲜于灵竹采纳,获得10
2分钟前
跳跃立果发布了新的文献求助20
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3660977
求助须知:如何正确求助?哪些是违规求助? 3222200
关于积分的说明 9743953
捐赠科研通 2931784
什么是DOI,文献DOI怎么找? 1605221
邀请新用户注册赠送积分活动 757760
科研通“疑难数据库(出版商)”最低求助积分说明 734503