Dual Convolutional Neural Networks for Breast Mass Segmentation and Diagnosis in Mammography

人工智能 计算机科学 卷积神经网络 分割 乳腺摄影术 深度学习 模式识别(心理学) 乳腺癌 图像分割 上下文图像分类 水准点(测量) 人工神经网络 图像(数学) 癌症 医学 内科学 地理 大地测量学
作者
Heyi Li,Dongdong Chen,William H. Nailon,Mike E. Davies,David Laurenson
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (1): 3-13 被引量:69
标识
DOI:10.1109/tmi.2021.3102622
摘要

Deep convolutional neural networks (CNNs) have emerged as a new paradigm for Mammogram diagnosis. Contemporary CNN-based computer-aided-diagnosis systems (CADs) for breast cancer directly extract latent features from input mammogram image and ignore the importance of morphological features. In this paper, we introduce a novel end-to-end deep learning framework for mammogram image processing, which computes mass segmentation and simultaneously predicts diagnosis results. Specifically, our method is constructed in a dual-path architecture that solves the mapping in a dual-problem manner, with an additional consideration of important shape and boundary knowledge. One path, called the Locality Preserving Learner (LPL), is devoted to hierarchically extracting and exploiting intrinsic features of the input. Whereas the other path, called the Conditional Graph Learner (CGL), focuses on generating geometrical features via modeling pixel-wise image to mask correlations. By integrating the two learners, both the cancer semantics and cancer representations are well learned, and the component learning paths in return complement each other, contributing an improvement to the mass segmentation and cancer classification problem at the same time. In addition, by integrating an automatic detection set-up, the DualCoreNet achieves fully automatic breast cancer diagnosis practically. Experimental results show that in benchmark DDSM dataset, DualCoreNet has outperformed other related works in both segmentation and classification tasks, achieving 92.27% DI coefficient and 0.85 AUC score. In another benchmark INbreast dataset, DualCoreNet achieves the best mammography segmentation (93.69% DI coefficient) and competitive classification performance (0.93 AUC score).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
金玉王其完成签到,获得积分10
刚刚
万能图书馆应助狗儿吖采纳,获得10
1秒前
艾科研发布了新的文献求助10
2秒前
FIN应助燕燕于飞采纳,获得10
4秒前
nanfeng发布了新的文献求助10
6秒前
嚯嚯李发布了新的文献求助10
6秒前
7秒前
英姑应助灵活又幸福的胖采纳,获得10
7秒前
丘比特应助猴子没有壳采纳,获得10
8秒前
上官若男应助勤劳的白晴采纳,获得10
9秒前
团结友爱完成签到 ,获得积分10
10秒前
shan完成签到,获得积分10
10秒前
kzf丶bryant发布了新的文献求助10
11秒前
11秒前
Ava应助猩心采纳,获得10
12秒前
12秒前
cocolu应助卷白菜采纳,获得10
12秒前
江左无念发布了新的文献求助10
16秒前
罗小球发布了新的文献求助10
16秒前
1Q84完成签到,获得积分10
20秒前
肖同学发布了新的文献求助10
21秒前
长情墨镜发布了新的文献求助10
22秒前
23秒前
kaede完成签到,获得积分10
25秒前
26秒前
27秒前
FF发布了新的文献求助10
27秒前
rxgg完成签到,获得积分10
28秒前
失眠的霸完成签到,获得积分10
28秒前
Aurora发布了新的文献求助10
28秒前
七月关注了科研通微信公众号
29秒前
1Q84发布了新的文献求助10
31秒前
大模型应助分工合作采纳,获得10
31秒前
31秒前
xxx发布了新的文献求助10
31秒前
31秒前
肖同学完成签到,获得积分10
32秒前
32秒前
粽子发布了新的文献求助10
33秒前
katu发布了新的文献求助10
34秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459747
求助须知:如何正确求助?哪些是违规求助? 3054034
关于积分的说明 9040088
捐赠科研通 2743366
什么是DOI,文献DOI怎么找? 1504785
科研通“疑难数据库(出版商)”最低求助积分说明 695429
邀请新用户注册赠送积分活动 694709