Contrast-enhanced to noncontrast CT transformation via an adjacency content-transfer-based deep subtraction residual neural network

计算机科学 人工智能 相似性(几何) 残余物 邻接表 减法 核医学 衰减 模式识别(心理学) 对比度(视觉) 医学 算法 数学 图像(数学) 物理 算术 光学
作者
Xianfan Gu,Zhou Liu,Jinjie Zhou,Honghong Luo,Canwen Che,Qian Yang,Lijian Liu,Yongfeng Yang,Xin Liu,Hairong Zheng,Dong Liang,Dehong Luo,Zhanli Hu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (14): 145017-145017 被引量:3
标识
DOI:10.1088/1361-6560/ac0758
摘要

To reduce overall patient radiation exposure in some clinical scenarios (since cancer patients need frequent follow-ups), noncontrast CT is not used in some institutions. However, although less desirable, noncontrast CT could provide additional important information. In this article, we propose a deep subtraction residual network based on adjacency content transfer to reconstruct noncontrast CT from contrast CT and maintain image quality comparable to that of a CT scan originally acquired without contrast. To address the slight structural dissimilarity of the paired CT images (noncontrast CT and contrast CT) due to involuntary physiological motion, we introduce a contrastive loss network derived from the adjacency content-transfer strategy. We evaluate the results of various similarity metrics (MSE, SSIM, NRMSE, PSNR, MAE) and the fitting curve (HU distribution) of the output mapping to estimate the reconstruction performance of the algorithm. To build the model, we randomly select a total of 15,405 CT paired images (noncontrast CT and contrast-enhanced CT) for training and 10,270 CT paired images for testing. The proposed algorithm preserves the robust structures from the contrast-enhanced CT scans and learns the noncontrast attenuation pattern from the noncontrast CT scans. During the evaluation, the deep subtraction residual network achieves higher MSE, MAE, NRMSE, and PSNR scores (by 30%) than those of the baseline models (BEGAN, CycleGAN, Pixel2Pixel) and better simulates the HU curve of noncontrast CT attenuation. After validation based on an analysis of the experimental results, we can report that the noncontrast CT images reconstructed by our proposed algorithm not only preserve the high-quality structures from the contrast-enhanced CT images, but also mimic the CT attenuation of the originally acquired noncontrast CT images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高高发布了新的文献求助10
刚刚
刚刚
大胆语琴完成签到,获得积分10
1秒前
1秒前
科研通AI5应助孤独的鞋垫采纳,获得10
2秒前
梦蝴蝶发布了新的文献求助10
2秒前
面包边应助111采纳,获得10
2秒前
2秒前
LUNWENREQUEST发布了新的文献求助10
2秒前
2秒前
赘婿应助温乘云采纳,获得10
2秒前
2秒前
3秒前
qp发布了新的文献求助10
3秒前
hujie发布了新的文献求助10
4秒前
桐桐应助Sandro采纳,获得10
4秒前
clonidine发布了新的文献求助10
4秒前
天天快乐应助甜甜契采纳,获得10
5秒前
小鬼丶发布了新的文献求助10
5秒前
Suica关注了科研通微信公众号
5秒前
5秒前
梦旋发布了新的文献求助10
5秒前
Wang发布了新的文献求助10
6秒前
王大锤发布了新的文献求助10
7秒前
马尔斯完成签到,获得积分10
7秒前
8秒前
9秒前
kuoping完成签到,获得积分10
11秒前
Lucas应助zhsy采纳,获得10
11秒前
SciGPT应助再见理想采纳,获得10
11秒前
11秒前
12秒前
研友_VZG7GZ应助ellie0125采纳,获得10
12秒前
缥缈奇迹完成签到,获得积分10
13秒前
科研通AI2S应助gumausi采纳,获得10
13秒前
温暖涫完成签到,获得积分10
14秒前
骑羊发布了新的文献求助10
14秒前
Ava应助大苏打采纳,获得10
14秒前
桐桐应助qp采纳,获得10
14秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3560985
求助须知:如何正确求助?哪些是违规求助? 3134744
关于积分的说明 9409650
捐赠科研通 2834980
什么是DOI,文献DOI怎么找? 1558372
邀请新用户注册赠送积分活动 728097
科研通“疑难数据库(出版商)”最低求助积分说明 716686