Exploring associations between prenatal exposure to multiple endocrine disruptors and birth weight with exposure continuum mapping

生命银行 医学 多溴联苯醚 生物标志物 生理学 怀孕 暴露评估 环境卫生 产前暴露 妊娠期 化学 生物 生物信息学 污染物 遗传学 有机化学
作者
John L. Pearce,Brian Neelon,Michael S. Bloom,Jessie P. Buckley,Cande V. Ananth,Frederica P. Perera,John E. Vena,Kelly J. Hunt
出处
期刊:Environmental Research [Elsevier BV]
卷期号:200: 111386-111386 被引量:21
标识
DOI:10.1016/j.envres.2021.111386
摘要

Improved understanding of how prenatal exposure to environmental mixtures influences birth weight or other adverse outcomes is essential in protecting child health.We illustrate a novel exposure continuum mapping (ECM) framework that combines the self-organizing map (SOM) algorithm with generalized additive modeling (GAM) in order to integrate spatially-correlated learning into the study mixtures of environmental chemicals. We demonstrate our method using biomarker data on chemical mixtures collected from a diverse mother-child cohort.We obtained biomarker concentrations for 16 prevalent endocrine disrupting chemicals (EDCs) collected in the first-trimester from a large, ethnically/racially diverse cohort of healthy pregnant women (n = 604) during 2009-2012. This included 4 organochlorine pesticides (OCPs), 4 polybrominated diphenyl ethers (PBDEs), 4 polychlorinated biphenyls (PCBs), and 4 perfluoroalkyl substances (PFAS). We applied a two-stage exposure continuum mapping (ECM) approach to investigate the combined impact of the EDCs on birth weight. First, we analyzed our EDC data with SOM in order to reduce the dimensionality of our exposure matrix into a two-dimensional grid (i.e., map) where nodes depict the types of EDC mixture profiles observed within our data. We define this map as the 'exposure continuum map', as the gridded surface reflects a continuous sequence of exposure profiles where adjacent nodes are composed of similar mixtures and profiles at more distal nodes are more distinct. Lastly, we used GAM to estimate a joint-dose response based on the coordinates of our ECM in order to capture the relationship between participant location on the ECM and infant birth weight after adjusting for maternal age, race/ethnicity, pre-pregnancy body mass index (BMI), education, serum cotinine, total plasma lipids, and infant sex. Single chemical regression models were applied to facilitate comparison.We found that an ECM with 36 mixture profiles retained 70% of the total variation in the exposure data. Frequency analysis showed that the most common profiles included relatively low concentrations for most EDCs (~10%) and that profiles with relatively higher concentrations (for single or multiple EDCs) tended to be rarer (~1%) but more distinct. Estimation of a joint-dose response function revealed that lower birth weights mapped to locations where profile compositions were dominated by relatively high PBDEs and select OCPs. Higher birth weights mapped to locations where profiles consisted of higher PCBs. These findings agreed well with results from single chemical models.Findings from our study revealed a wide range of prenatal exposure scenarios and found that combinations exhibiting higher levels of PBDEs were associated with lower birth weight and combinations with higher levels of PCBs and PFAS were associated with increased birth weight. Our ECM approach provides a promising framework for supporting studies of other exposure mixtures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助纯真的幼丝采纳,获得10
2秒前
2秒前
西西弗斯发布了新的文献求助10
2秒前
2秒前
3秒前
牛牛的我发布了新的文献求助10
3秒前
5秒前
故城完成签到 ,获得积分10
6秒前
华111发布了新的文献求助10
7秒前
8秒前
Xxc发布了新的文献求助10
8秒前
yywa发布了新的文献求助10
9秒前
富裕山人完成签到 ,获得积分20
9秒前
啦啦啦啦啦完成签到 ,获得积分10
11秒前
11秒前
Bonnie发布了新的文献求助10
13秒前
高数数完成签到 ,获得积分10
13秒前
科研通AI5应助华111采纳,获得30
14秒前
yang完成签到,获得积分10
15秒前
15秒前
15秒前
yun完成签到 ,获得积分10
15秒前
16秒前
大大卷w完成签到 ,获得积分10
16秒前
17秒前
SciGPT应助日晋斗斤采纳,获得10
17秒前
慕青应助yywa采纳,获得10
18秒前
18秒前
Lucky完成签到 ,获得积分10
18秒前
19秒前
xiaoyudian完成签到,获得积分10
19秒前
19秒前
21秒前
脑洞疼应助super采纳,获得10
21秒前
HJM发布了新的文献求助10
23秒前
xiaoyudian发布了新的文献求助30
23秒前
kingwill应助kkvv采纳,获得20
23秒前
23秒前
乐乐应助朱冠华采纳,获得10
23秒前
木子姗发布了新的文献求助10
24秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3757458
求助须知:如何正确求助?哪些是违规求助? 3300648
关于积分的说明 10114762
捐赠科研通 3015126
什么是DOI,文献DOI怎么找? 1655889
邀请新用户注册赠送积分活动 790129
科研通“疑难数据库(出版商)”最低求助积分说明 753604