Exploring associations between prenatal exposure to multiple endocrine disruptors and birth weight with exposure continuum mapping

生命银行 医学 多溴联苯醚 生物标志物 生理学 怀孕 暴露评估 环境卫生 产前暴露 妊娠期 化学 生物 生物信息学 污染物 遗传学 有机化学
作者
John L. Pearce,Brian Neelon,Michael S. Bloom,Jessie P. Buckley,Cande V. Ananth,Frederica P. Perera,John E. Vena,Kelly J. Hunt
出处
期刊:Environmental Research [Elsevier]
卷期号:200: 111386-111386 被引量:21
标识
DOI:10.1016/j.envres.2021.111386
摘要

Improved understanding of how prenatal exposure to environmental mixtures influences birth weight or other adverse outcomes is essential in protecting child health.We illustrate a novel exposure continuum mapping (ECM) framework that combines the self-organizing map (SOM) algorithm with generalized additive modeling (GAM) in order to integrate spatially-correlated learning into the study mixtures of environmental chemicals. We demonstrate our method using biomarker data on chemical mixtures collected from a diverse mother-child cohort.We obtained biomarker concentrations for 16 prevalent endocrine disrupting chemicals (EDCs) collected in the first-trimester from a large, ethnically/racially diverse cohort of healthy pregnant women (n = 604) during 2009-2012. This included 4 organochlorine pesticides (OCPs), 4 polybrominated diphenyl ethers (PBDEs), 4 polychlorinated biphenyls (PCBs), and 4 perfluoroalkyl substances (PFAS). We applied a two-stage exposure continuum mapping (ECM) approach to investigate the combined impact of the EDCs on birth weight. First, we analyzed our EDC data with SOM in order to reduce the dimensionality of our exposure matrix into a two-dimensional grid (i.e., map) where nodes depict the types of EDC mixture profiles observed within our data. We define this map as the 'exposure continuum map', as the gridded surface reflects a continuous sequence of exposure profiles where adjacent nodes are composed of similar mixtures and profiles at more distal nodes are more distinct. Lastly, we used GAM to estimate a joint-dose response based on the coordinates of our ECM in order to capture the relationship between participant location on the ECM and infant birth weight after adjusting for maternal age, race/ethnicity, pre-pregnancy body mass index (BMI), education, serum cotinine, total plasma lipids, and infant sex. Single chemical regression models were applied to facilitate comparison.We found that an ECM with 36 mixture profiles retained 70% of the total variation in the exposure data. Frequency analysis showed that the most common profiles included relatively low concentrations for most EDCs (~10%) and that profiles with relatively higher concentrations (for single or multiple EDCs) tended to be rarer (~1%) but more distinct. Estimation of a joint-dose response function revealed that lower birth weights mapped to locations where profile compositions were dominated by relatively high PBDEs and select OCPs. Higher birth weights mapped to locations where profiles consisted of higher PCBs. These findings agreed well with results from single chemical models.Findings from our study revealed a wide range of prenatal exposure scenarios and found that combinations exhibiting higher levels of PBDEs were associated with lower birth weight and combinations with higher levels of PCBs and PFAS were associated with increased birth weight. Our ECM approach provides a promising framework for supporting studies of other exposure mixtures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
白方明发布了新的文献求助10
1秒前
SciGPT应助宋鹏炜采纳,获得10
1秒前
冷傲鸡翅完成签到,获得积分10
2秒前
4秒前
Noe发布了新的文献求助20
4秒前
4秒前
蘑菇完成签到,获得积分10
4秒前
Cyan发布了新的文献求助10
4秒前
无花果应助冰酒采纳,获得10
5秒前
浮浮世世发布了新的文献求助50
5秒前
番豆完成签到,获得积分10
6秒前
VV完成签到,获得积分10
7秒前
7秒前
zkai完成签到,获得积分10
7秒前
8秒前
清秀刺猬发布了新的文献求助10
8秒前
9秒前
网上飞发布了新的文献求助10
9秒前
9秒前
zzzwww完成签到 ,获得积分10
10秒前
DMD发布了新的文献求助200
10秒前
10秒前
11秒前
11秒前
大意的砖家完成签到,获得积分10
11秒前
12秒前
12秒前
嘤嘤怪完成签到,获得积分10
13秒前
zhangxinyu发布了新的文献求助10
13秒前
14秒前
Zwuijl发布了新的文献求助10
14秒前
田様应助匹诺曹采纳,获得10
14秒前
14秒前
欢喜靖儿完成签到,获得积分20
14秒前
15秒前
16秒前
黄金天下完成签到,获得积分10
16秒前
superLmy完成签到 ,获得积分10
16秒前
lidd完成签到,获得积分10
16秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Population Genetics 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3493735
求助须知:如何正确求助?哪些是违规求助? 3079538
关于积分的说明 9159649
捐赠科研通 2772176
什么是DOI,文献DOI怎么找? 1521450
邀请新用户注册赠送积分活动 705105
科研通“疑难数据库(出版商)”最低求助积分说明 702792