Efficient Sampling-Based Motion Planning for On-Road Autonomous Driving

随机树 运动规划 弹道 计算机科学 背景(考古学) 集合(抽象数据类型) 移动机器人 树(集合论) 机器人 路径(计算) 车辆动力学 状态空间 人工智能 工程类 数学 古生物学 数学分析 统计 物理 天文 汽车工程 生物 程序设计语言
作者
Liang Ma,Jianru Xue,Kuniaki Kawabata,Jihua Zhu,Chao Ma,Nanning Zheng
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:16 (4): 1961-1976 被引量:169
标识
DOI:10.1109/tits.2015.2389215
摘要

This paper introduces an efficient motion planning method for on-road driving of the autonomous vehicles, which is based on the rapidly exploring random tree (RRT) algorithm. RRT is an incremental sampling-based algorithm and is widely used to solve the planning problem of mobile robots. However, due to the meandering path, the inaccurate terminal state, and the slow exploration, it is often inefficient in many applications such as autonomous vehicles. To address these issues and considering the realistic context of on-road autonomous driving, we propose a fast RRT algorithm that introduces a rule-template set based on the traffic scenes and an aggressive extension strategy of search tree. Both improvements lead to a faster and more accurate RRT toward the goal state compared with the basic RRT algorithm. Meanwhile, a model-based prediction postprocess approach is adopted, by which the generated trajectory can be further smoothed and a feasible control sequence for the vehicle would be obtained. Furthermore, in the environments with dynamic obstacles, an integrated approach of the fast RRT algorithm and the configuration-time space can be used to improve the quality of the planned trajectory and the replanning. A large number of experimental results illustrate that our method is fast and efficient in solving planning queries of on-road autonomous driving and demonstrate its superior performances over previous approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呆呆熊发布了新的文献求助10
刚刚
rita_sun1969发布了新的文献求助30
刚刚
小帅完成签到,获得积分10
1秒前
2秒前
4秒前
曲聋五完成签到 ,获得积分0
5秒前
5秒前
Muhammad发布了新的文献求助10
6秒前
FashionBoy应助feng采纳,获得10
6秒前
6秒前
7秒前
8秒前
Jasper应助虚拟的怀绿采纳,获得10
8秒前
9秒前
烟花应助这样很OK采纳,获得10
9秒前
11秒前
11秒前
22发布了新的文献求助10
11秒前
水下月发布了新的文献求助10
12秒前
大大怪发布了新的文献求助10
12秒前
lulalula完成签到,获得积分10
13秒前
14秒前
RR完成签到,获得积分10
14秒前
14秒前
Huco完成签到,获得积分10
16秒前
科研通AI5应助xuchen采纳,获得10
16秒前
18秒前
闪闪如松发布了新的文献求助10
18秒前
早日发SCI完成签到,获得积分10
19秒前
天天快乐应助文静的翠彤采纳,获得10
19秒前
Xian完成签到,获得积分10
19秒前
Kang发布了新的文献求助10
20秒前
20秒前
20秒前
20秒前
yyyyyyyyyyyiiii完成签到 ,获得积分10
21秒前
乂贰ZERO叁发布了新的文献求助10
22秒前
小生不才完成签到 ,获得积分10
22秒前
面壁思过应助kingwill采纳,获得30
22秒前
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989645
求助须知:如何正确求助?哪些是违规求助? 3531805
关于积分的说明 11254983
捐赠科研通 3270372
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176