Efficient Sampling-Based Motion Planning for On-Road Autonomous Driving

随机树 运动规划 弹道 计算机科学 背景(考古学) 集合(抽象数据类型) 移动机器人 树(集合论) 机器人 路径(计算) 车辆动力学 状态空间 人工智能 工程类 数学 天文 程序设计语言 汽车工程 古生物学 数学分析 物理 统计 生物
作者
Liang Ma,Jianru Xue,Kuniaki Kawabata,Jihua Zhu,Chao Ma,Nanning Zheng
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:16 (4): 1961-1976 被引量:169
标识
DOI:10.1109/tits.2015.2389215
摘要

This paper introduces an efficient motion planning method for on-road driving of the autonomous vehicles, which is based on the rapidly exploring random tree (RRT) algorithm. RRT is an incremental sampling-based algorithm and is widely used to solve the planning problem of mobile robots. However, due to the meandering path, the inaccurate terminal state, and the slow exploration, it is often inefficient in many applications such as autonomous vehicles. To address these issues and considering the realistic context of on-road autonomous driving, we propose a fast RRT algorithm that introduces a rule-template set based on the traffic scenes and an aggressive extension strategy of search tree. Both improvements lead to a faster and more accurate RRT toward the goal state compared with the basic RRT algorithm. Meanwhile, a model-based prediction postprocess approach is adopted, by which the generated trajectory can be further smoothed and a feasible control sequence for the vehicle would be obtained. Furthermore, in the environments with dynamic obstacles, an integrated approach of the fast RRT algorithm and the configuration-time space can be used to improve the quality of the planned trajectory and the replanning. A large number of experimental results illustrate that our method is fast and efficient in solving planning queries of on-road autonomous driving and demonstrate its superior performances over previous approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七栀完成签到,获得积分10
刚刚
yaya完成签到 ,获得积分10
2秒前
赘婿应助友好沛菡采纳,获得10
2秒前
果粒橙完成签到,获得积分20
2秒前
5秒前
mylian完成签到,获得积分10
6秒前
安静的花卷完成签到,获得积分10
7秒前
7秒前
黄少阳完成签到,获得积分20
8秒前
9秒前
Tinadai123456发布了新的文献求助10
10秒前
bkagyin应助幸福果汁采纳,获得10
12秒前
13秒前
英姑应助呼斯乐采纳,获得10
14秒前
高贵的往事完成签到,获得积分10
15秒前
剑诗杜康发布了新的文献求助10
16秒前
魏雨轩完成签到,获得积分10
16秒前
17秒前
上官若男应助感动水杯采纳,获得10
17秒前
大个应助完美的雨泽采纳,获得10
17秒前
17秒前
18秒前
年轻思山完成签到,获得积分10
19秒前
19秒前
沉默是金发布了新的文献求助10
21秒前
CAOHOU应助han采纳,获得10
21秒前
wanci应助卢苗苗采纳,获得10
21秒前
22秒前
年轻思山发布了新的文献求助10
23秒前
25秒前
25秒前
28秒前
感动水杯发布了新的文献求助10
28秒前
达瓦里希完成签到 ,获得积分10
29秒前
Lorain发布了新的文献求助30
29秒前
29秒前
31秒前
派先生完成签到,获得积分10
31秒前
机智的芷天完成签到,获得积分10
32秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4546220
求助须知:如何正确求助?哪些是违规求助? 3977613
关于积分的说明 12316733
捐赠科研通 3645975
什么是DOI,文献DOI怎么找? 2007920
邀请新用户注册赠送积分活动 1043462
科研通“疑难数据库(出版商)”最低求助积分说明 932180