eIF3: a versatile scaffold for translation initiation complexes

真核小核糖体亚单位 真核起始因子 真核翻译 蛋白质亚单位 起始因子 生物 真核核糖体 翻译(生物学) 真核大核糖体亚单位 细胞生物学 遗传学 转移RNA 信使核糖核酸 基因 核糖核酸
作者
Alan G. Hinnebusch
出处
期刊:Trends in Biochemical Sciences [Elsevier BV]
卷期号:31 (10): 553-562 被引量:376
标识
DOI:10.1016/j.tibs.2006.08.005
摘要

Translation initiation in eukaryotes depends on many eukaryotic initiation factors (eIFs) that stimulate both recruitment of the initiator tRNA, Met-tRNAiMet, and mRNA to the 40S ribosomal subunit and subsequent scanning of the mRNA for the AUG start codon. The largest of these initiation factors, the eIF3 complex, organizes a web of interactions among several eIFs that assemble on the 40S subunit and participate in the different reactions involved in translation. Structural analysis suggests that eIF3 performs this scaffolding function by binding to the 40S subunit on its solvent-exposed surface rather than on its interface with the 60S subunit, where the decoding sites exist. This location of eIF3 seems ideally suited for its other proposed regulatory functions, including reinitiating translation on polycistronic mRNAs and acting as a receptor for protein kinases that control protein synthesis. Translation initiation in eukaryotes depends on many eukaryotic initiation factors (eIFs) that stimulate both recruitment of the initiator tRNA, Met-tRNAiMet, and mRNA to the 40S ribosomal subunit and subsequent scanning of the mRNA for the AUG start codon. The largest of these initiation factors, the eIF3 complex, organizes a web of interactions among several eIFs that assemble on the 40S subunit and participate in the different reactions involved in translation. Structural analysis suggests that eIF3 performs this scaffolding function by binding to the 40S subunit on its solvent-exposed surface rather than on its interface with the 60S subunit, where the decoding sites exist. This location of eIF3 seems ideally suited for its other proposed regulatory functions, including reinitiating translation on polycistronic mRNAs and acting as a receptor for protein kinases that control protein synthesis. Pre-initiation complex comprising the 40S subunit, TC, eIF1, eIF1A, eIF3 and eIF5. 43S PIC is so-called owing to its sedimentation velocity. Pre-initiation complex comprising a 43S PIC bound to mRNA. Single subunit factor that binds near the 40S subunit P-site. eIF1 enhances MFC assembly (in yeast), stimulates 43S PIC assembly and scanning, and promotes AUG selection by impeding GTP hydrolysis and release of Pi from eIF2–GDP–Pi at non-AUG codons. eIF1 is released from the P-site on AUG recognition. Single subunit factor thought to bind in the A-site of the 40S subunit. eIF1A stimulates 43S PIC assembly, scanning and AUG recognition. Heterotrimeric initiation factor (comprising subunits α, β and γ) that delivers Met-tRNAiMet to the 40S subunit in a ternary complex with GTP to form the 43S PIC. eIF2 stimulates MFC assembly (in yeast) and mRNA recruitment to the 43S PIC, and functions in AUG recognition during scanning. Guanine nucleotide exchange factor for eIF2 that recycles eIF2–GDP to eIF2–GTP to enable TC formation and another round of initiation. eIF2B is inhibited by phosphorylation of eIF2 on its α subunit by GCN2 and other eIF2α kinases. Single subunit factor that stimulates the ATP-dependent RNA helicase activity of eIF4A and interacts with eIF3. Heterotrimeric initiation factor comprising the m7G-cap-binding protein eIF4E, the ATP-dependent RNA helicase eIF4A, and the scaffold subunit eIF4G. Functions in mRNA recruitment to the 43S PIC (to produce the 48S PIC), scanning and AUG recognition. eIF4G has binding sites for PABP, eIF4E, eIF4A, eIF3 (in mammals) and eIF5 (in budding yeast). GTPase-activating protein for eIF2. eIF5 is required for GTP hydrolysis by TC on AUG recognition, is a prerequisite for association of the 60S subunit, and stimulates MFC assembly, 43S PIC formation and mRNA recruitment (possibly via interaction with eIF4G) in yeast. General control nonderepressible phenotype of mutations that prevents induction of translation of GCN4 mRNA and transcription of amino acid biosynthetic genes regulated by GCN4 under general amino acid control. General control nonderepressible 2. GCN2 is a protein kinase that phosphorylates eIF2 on its α subunit under conditions of amino acid starvation to inhibit recycling of eIF2–GDP to eIF2–GTP by eIF2B, which reduces TC formation and (in budding yeast) induces translation of GCN4 mRNA. Transcriptional activator of amino acid biosynthetic genes subject to general amino acid control. General control derepressed phenotype of mutations that confer constitutive derepression of translation of GCN4 mRNA and transcription of amino acid biosynthetic genes regulated by GCN4 under general amino acid control. Initiator methionyl tRNA charged with methionine. A multi-initiation factor complex comprising eIF3, eIF5, eIF1 and TC that can be isolated from budding yeast free of ribosomes and whose assembly stimulates or stabilizes formation of the 43S PIC. Mammalian target of rapamycin. mTOR is a protein kinase that stimulates translation initiation in response to adequate nutrients or insulin treatment by promoting phosphorylation of the eIF4E-binding protein, thereby preventing it from binding to eIF4E and from dissociating eIF4F. It also seems to stimulate binding of eIF3j to the eIF3 complex, eIF3–eIF4G association, and recruitment of eIF4B to the 48S PIC. Poly(A)-binding protein; binds to the poly(A) tail and to eIF4G, and stimulates mRNA recruitment to the 43S PIC. RNA recognition motif; contains conserved RNP1 and RNP2 motifs. S6 kinase 1. S6K1 is activated by mTOR and phosphorylates ribosomal protein S6 and eIF4B. Supressor of initiation codon mutation phenotype of mutations that confer increased initiation at an in-frame UUG codon in the beginning of the histidine biosynthetic gene HIS4, restoring the translation of HIS4 mRNA lacking the AUG start codon. Transactivator protein of plant caulimoviruses that interacts with eIF3g and stimulates reinitiation on polycistronic mRNAs. Ternary complex comprising eIF2 bound to GTP and Met-tRNAiMet. Short upstream open reading frame that regulates translation initiation of a second open reading frame downstream in the mRNA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SONGYEZI完成签到,获得积分0
刚刚
邵翎365发布了新的文献求助10
4秒前
机灵映雁完成签到 ,获得积分10
4秒前
Nic完成签到,获得积分10
11秒前
sunshine发布了新的文献求助10
16秒前
CLTTTt完成签到,获得积分10
21秒前
阜睿完成签到 ,获得积分10
21秒前
26秒前
卞卞完成签到,获得积分10
27秒前
39秒前
火星上小土豆完成签到 ,获得积分10
39秒前
爱撒娇的孤丹完成签到 ,获得积分10
41秒前
xc完成签到,获得积分10
41秒前
CHANG完成签到 ,获得积分10
43秒前
陈海明发布了新的文献求助10
43秒前
pep完成签到 ,获得积分10
50秒前
科研小哥完成签到,获得积分10
51秒前
小谭完成签到 ,获得积分10
52秒前
连难胜完成签到 ,获得积分10
54秒前
友好语风完成签到,获得积分10
58秒前
陈海明完成签到,获得积分10
1分钟前
ikun0000完成签到,获得积分10
1分钟前
她的城完成签到,获得积分0
1分钟前
1分钟前
ding应助烂漫的汲采纳,获得10
1分钟前
胡杨发布了新的文献求助10
1分钟前
Wmhan完成签到 ,获得积分10
1分钟前
寇婧怡完成签到 ,获得积分10
1分钟前
股价发布了新的文献求助10
1分钟前
糊涂涂完成签到 ,获得积分10
1分钟前
烂漫的汲完成签到,获得积分10
1分钟前
1分钟前
包子牛奶完成签到,获得积分10
1分钟前
我啊完成签到 ,获得积分10
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
深情安青应助股价采纳,获得10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
orixero应助科研通管家采纳,获得10
1分钟前
Jason-1024完成签到,获得积分10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965769
求助须知:如何正确求助?哪些是违规求助? 3510991
关于积分的说明 11155985
捐赠科研通 3245486
什么是DOI,文献DOI怎么找? 1793074
邀请新用户注册赠送积分活动 874215
科研通“疑难数据库(出版商)”最低求助积分说明 804255