High piezoelectricity in epitaxial BiFeO3 microcantilevers

材料科学 压电 铁电性 微电子机械系统 压电系数 极化(电化学) 外延 光电子学 薄膜 基质(水族馆) 悬臂梁 压电响应力显微镜 纳米技术 复合材料 电介质 化学 物理化学 地质学 海洋学 图层(电子)
作者
Sylvia Matzen,Stéphane Gable,N. Lequet,S. Yousfi,Komalika Rani,Thomas Maroutian,Guillaume Agnus,H. Bouyanfif,Philippe Lecoeur
出处
期刊:Applied Physics Letters [American Institute of Physics]
卷期号:121 (14) 被引量:4
标识
DOI:10.1063/5.0105404
摘要

The large switchable ferroelectric polarization and lead-free composition of BiFeO3 make it a promising candidate as an active material in numerous applications, in particular, in micro-electro-mechanical systems (MEMS) when BiFeO3 is integrated in a thin film form on a silicon substrate. Here, 200-nm-thick Mn-doped BiFeO3 thin films have been epitaxially grown on a SrRuO3/SrTiO3/Si substrate and patterned into microcantilevers as prototype device structures for piezoelectric actuation. The devices demonstrate excellent ferroelectric response with a remanent polarization of 55 μC/cm2. The epitaxial BiFeO3 MEMS exhibit very high piezoelectric response with transverse piezoelectric coefficient d31 reaching 83 pm/V. The BiFeO3 cantilevers show larger electromechanical performance (the ratio of curvature/electric field) than that of state-of-art piezoelectric cantilevers, including well-known PZT (Pb(Zr,Ti)O3) and the hyper-active PMN–PT (Pb(Mg1/3Nb2/3)O3-PbTiO3). In addition, the piezoelectricity in BiFeO3 MEMS is found to depend on the ferroelectric polarization direction, which could originate from the flexoelectric effect and be exploited to further enhance the electromechanical performance of the devices. These results could potentially lead to a replacement of lead-based piezoelectrics by BiFeO3 in many microdevices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XXF发布了新的文献求助10
刚刚
zrz发布了新的文献求助10
1秒前
1秒前
1秒前
田様应助BaekHyun采纳,获得10
3秒前
peng发布了新的文献求助10
3秒前
3秒前
4秒前
科研通AI5应助孔小白采纳,获得10
5秒前
5秒前
舒适逊完成签到 ,获得积分10
5秒前
科研通AI5应助11111采纳,获得10
6秒前
CipherSage应助hxn采纳,获得10
6秒前
8秒前
深情安青应助shatang采纳,获得10
8秒前
zxx5012发布了新的文献求助10
8秒前
芥丶子完成签到,获得积分10
9秒前
曾开心完成签到,获得积分10
9秒前
平淡南霜发布了新的文献求助10
9秒前
Blue_Pig发布了新的文献求助10
10秒前
李健的小迷弟应助逐风采纳,获得30
10秒前
yatou5651发布了新的文献求助10
11秒前
Akim应助和谐乌龟采纳,获得10
11秒前
peng完成签到,获得积分20
12秒前
CipherSage应助汉关采纳,获得10
12秒前
13秒前
13秒前
13秒前
丘比特应助XM采纳,获得10
13秒前
bkagyin应助Blue_Pig采纳,获得10
14秒前
15秒前
16秒前
16秒前
完美世界应助加油加油采纳,获得10
17秒前
17秒前
18秒前
ns发布了新的文献求助30
20秒前
11111发布了新的文献求助10
20秒前
21秒前
药学牛马完成签到,获得积分10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808