Real-Time Detection of Apple Leaf Diseases in Natural Scenes Based on YOLOv5

计算机科学 人工智能 模式识别(心理学) 稳健性(进化) 特征(语言学) 卷积神经网络 棱锥(几何) 计算机视觉 数学 生物化学 化学 语言学 哲学 几何学 基因
作者
Huishan Li,Lei Shi,Siwen Fang,Fei Yin
出处
期刊:Agriculture [Multidisciplinary Digital Publishing Institute]
卷期号:13 (4): 878-878 被引量:14
标识
DOI:10.3390/agriculture13040878
摘要

Aiming at the problem of accurately locating and identifying multi-scale and differently shaped apple leaf diseases from a complex background in natural scenes, this study proposed an apple leaf disease detection method based on an improved YOLOv5s model. Firstly, the model utilized the bidirectional feature pyramid network (BiFPN) to achieve multi-scale feature fusion efficiently. Then, the transformer and convolutional block attention module (CBAM) attention mechanisms were added to reduce the interference from invalid background information, improving disease characteristics’ expression ability and increasing the accuracy and recall of the model. Experimental results showed that the proposed BTC-YOLOv5s model (with a model size of 15.8M) can effectively detect four types of apple leaf diseases in natural scenes, with 84.3% mean average precision (mAP). With an octa-core CPU, the model could process 8.7 leaf images per second on average. Compared with classic detection models of SSD, Faster R-CNN, YOLOv4-tiny, and YOLOx, the mAP of the proposed model was increased by 12.74%, 48.84%, 24.44%, and 4.2%, respectively, and offered higher detection accuracy and faster detection speed. Furthermore, the proposed model demonstrated strong robustness and mAP exceeding 80% under strong noise conditions, such as exposure to bright lights, dim lights, and fuzzy images. In conclusion, the new BTC-YOLOv5s was found to be lightweight, accurate, and efficient, making it suitable for application on mobile devices. The proposed method could provide technical support for early intervention and treatment of apple leaf diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助simon采纳,获得10
刚刚
刚刚
1秒前
2秒前
2秒前
2秒前
3秒前
王纯完成签到,获得积分10
4秒前
阳光完成签到,获得积分10
4秒前
缥缈斌发布了新的文献求助10
5秒前
扭扭车完成签到,获得积分20
7秒前
周萌博完成签到,获得积分10
7秒前
景景向前冲完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
klz完成签到,获得积分10
8秒前
信仰xy发布了新的文献求助10
9秒前
雪球完成签到,获得积分10
9秒前
10秒前
10秒前
HanlinLiu完成签到,获得积分10
10秒前
momokop完成签到,获得积分10
10秒前
曹馨月发布了新的文献求助10
10秒前
11秒前
11秒前
细心冰之发布了新的文献求助30
11秒前
12秒前
CodeCraft应助BWZ采纳,获得10
12秒前
shenqi发布了新的文献求助10
12秒前
吕文晴发布了新的文献求助10
12秒前
昂口3发布了新的文献求助10
13秒前
优雅的母鸡完成签到,获得积分10
13秒前
cong1216发布了新的文献求助10
14秒前
14秒前
14秒前
扭扭车发布了新的文献求助10
15秒前
15秒前
15秒前
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961294
求助须知:如何正确求助?哪些是违规求助? 3507579
关于积分的说明 11136907
捐赠科研通 3240039
什么是DOI,文献DOI怎么找? 1790707
邀请新用户注册赠送积分活动 872450
科研通“疑难数据库(出版商)”最低求助积分说明 803255