Real-Time Detection of Apple Leaf Diseases in Natural Scenes Based on YOLOv5

计算机科学 人工智能 模式识别(心理学) 稳健性(进化) 特征(语言学) 卷积神经网络 棱锥(几何) 计算机视觉 数学 生物化学 化学 语言学 哲学 几何学 基因
作者
Huishan Li,Lei Shi,Siwen Fang,Fei Yin
出处
期刊:Agriculture [MDPI AG]
卷期号:13 (4): 878-878 被引量:14
标识
DOI:10.3390/agriculture13040878
摘要

Aiming at the problem of accurately locating and identifying multi-scale and differently shaped apple leaf diseases from a complex background in natural scenes, this study proposed an apple leaf disease detection method based on an improved YOLOv5s model. Firstly, the model utilized the bidirectional feature pyramid network (BiFPN) to achieve multi-scale feature fusion efficiently. Then, the transformer and convolutional block attention module (CBAM) attention mechanisms were added to reduce the interference from invalid background information, improving disease characteristics’ expression ability and increasing the accuracy and recall of the model. Experimental results showed that the proposed BTC-YOLOv5s model (with a model size of 15.8M) can effectively detect four types of apple leaf diseases in natural scenes, with 84.3% mean average precision (mAP). With an octa-core CPU, the model could process 8.7 leaf images per second on average. Compared with classic detection models of SSD, Faster R-CNN, YOLOv4-tiny, and YOLOx, the mAP of the proposed model was increased by 12.74%, 48.84%, 24.44%, and 4.2%, respectively, and offered higher detection accuracy and faster detection speed. Furthermore, the proposed model demonstrated strong robustness and mAP exceeding 80% under strong noise conditions, such as exposure to bright lights, dim lights, and fuzzy images. In conclusion, the new BTC-YOLOv5s was found to be lightweight, accurate, and efficient, making it suitable for application on mobile devices. The proposed method could provide technical support for early intervention and treatment of apple leaf diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
车水完成签到 ,获得积分10
1秒前
陈小黑应助wmq采纳,获得10
3秒前
大个应助Cathy采纳,获得10
4秒前
夏季霸吹完成签到,获得积分20
4秒前
糯米种子完成签到,获得积分0
5秒前
大大苏打实打实完成签到,获得积分10
5秒前
苏蛋蛋i发布了新的文献求助10
5秒前
6秒前
考啥都上岸完成签到,获得积分10
7秒前
11秒前
12秒前
酷波er应助xiaozhao采纳,获得10
12秒前
兼雨梧桐发布了新的文献求助10
13秒前
sunny完成签到,获得积分10
14秒前
欢呼凡英完成签到,获得积分10
14秒前
可爱的函函应助王企鹅采纳,获得10
15秒前
16秒前
chenchenchen发布了新的文献求助10
17秒前
乐乐应助顺心孤云采纳,获得10
17秒前
萧水白应助传统的鹏涛采纳,获得10
17秒前
今后应助龙骑士25采纳,获得30
19秒前
敏er好学发布了新的文献求助10
22秒前
tuanheqi应助萧水白采纳,获得100
24秒前
26秒前
26秒前
苏蛋蛋i发布了新的文献求助10
26秒前
fctlxazn完成签到,获得积分10
27秒前
余生完成签到,获得积分10
27秒前
超级的路人完成签到,获得积分10
29秒前
敬老院N号应助加油干采纳,获得10
29秒前
赘婿应助zzz采纳,获得10
30秒前
34秒前
FashionBoy应助愉快的沉鱼采纳,获得10
37秒前
37秒前
38秒前
39秒前
zhangpeng完成签到,获得积分10
40秒前
41秒前
41秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330222
求助须知:如何正确求助?哪些是违规求助? 2959796
关于积分的说明 8597036
捐赠科研通 2638227
什么是DOI,文献DOI怎么找? 1444215
科研通“疑难数据库(出版商)”最低求助积分说明 669074
邀请新用户注册赠送积分活动 656613