Machine learning-based identification of a psychotherapy-predictive electroencephalographic signature in PTSD

脑电图 心理干预 心理学 临床心理学 机器学习 心理治疗师 计算机科学 精神科
作者
Yu Zhang,Sharon Naparstek,Joseph R. Gordon,Mallissa Watts,Emmanuel Shpigel,Dawlat El-Said,Faizan Badami,Michelle L. Eisenberg,Russell T. Toll,Allyson Gage,Madeleine S. Goodkind,Amit Etkin,Wei Wu
标识
DOI:10.1038/s44220-023-00049-5
摘要

Although psychotherapy is at present the most effective treatment for posttraumatic stress disorder (PTSD), its efficacy is still limited for many patients, due mainly to the substantial clinical and neurobiological heterogeneity in the disease. Development of treatment-predictive algorithms by leveraging machine learning on brain connectivity data can advance our understanding of the neurobiological mechanisms underlying the disease and its treatment. Doing so with low-cost and easy-to-gather electroencephalogram (EEG) data may furthermore facilitate clinical translation of such algorithms for patients with PTSD. This study investigates whether individual patient-level resting-state EEG connectivity can predict psychotherapy outcomes in PTSD. We developed a treatment-predictive EEG signature using machine learning applied to high-density resting-state EEG collected from military veterans with PTSD. The predictive signature was dominated by theta frequency EEG connectivity differences and was able to generalize across two types of psychotherapy—prolonged exposure and cognitive processing therapy. Our results also advance a biological definition of a PTSD patient subgroup who is resistant to psychotherapy, which is currently the most evidence-based treatment for the condition. The findings support a path towards clinically translatable and scalable biomarkers that could be used to tailor interventions for each individual or drive the development of novel treatments (ClinicalTrials.gov registration: NCT03343028 ). Using machine learning, Zhang et al. identify EEG signature to predict psychotherapy outcomes in PTSD, paving the way towards the development of scalable biomarkers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
南提完成签到,获得积分10
1秒前
1秒前
宇宙暴龙战士暴打魔法少女完成签到,获得积分10
3秒前
huahero2025应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
实验好难应助科研通管家采纳,获得10
5秒前
sheep发布了新的文献求助10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
nozero应助科研通管家采纳,获得30
5秒前
华仔应助科研通管家采纳,获得10
5秒前
bewh应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
小橙完成签到 ,获得积分10
5秒前
secbox完成签到,获得积分10
6秒前
的地方法规完成签到,获得积分10
6秒前
星辰大海应助想多睡会儿采纳,获得10
8秒前
行者完成签到,获得积分10
8秒前
balelalala完成签到,获得积分10
9秒前
Mencanta完成签到,获得积分10
9秒前
野性的小懒虫完成签到,获得积分10
9秒前
11秒前
14秒前
科研通AI5应助阿豪闹闹采纳,获得10
14秒前
14秒前
所所应助侯焱采纳,获得10
14秒前
wanci应助Dawn采纳,获得10
15秒前
语秋完成签到,获得积分10
16秒前
SciGPT应助butiflow采纳,获得10
17秒前
悦耳如柏发布了新的文献求助10
20秒前
olive完成签到,获得积分10
20秒前
waws完成签到,获得积分10
22秒前
鼠鼠完成签到 ,获得积分10
23秒前
24秒前
25秒前
25秒前
天真的大象完成签到,获得积分10
25秒前
27秒前
daydayup完成签到,获得积分10
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3755011
求助须知:如何正确求助?哪些是违规求助? 3298314
关于积分的说明 10104397
捐赠科研通 3012905
什么是DOI,文献DOI怎么找? 1654832
邀请新用户注册赠送积分活动 789194
科研通“疑难数据库(出版商)”最低求助积分说明 753214