生物
癌症研究
上皮-间质转换
肝细胞癌
抑制器
转录因子
信号转导
CDH1
细胞质
细胞生物学
转移
癌症
细胞
基因
钙粘蛋白
生物化学
遗传学
作者
Feng Zhang,Jie Gao,Xudong Liu,Yaohui Sun,Long Liu,Bowen Hu,Zhihui Wang,Jihua Shi,Wenzhi Guo,Shuijun Zhang
摘要
Abstract Abnormal cholesterol synthesis plays a crucial role in the development of hepatocellular carcinoma (HCC). Sterol regulatory element‐binding protein 2 (SREBP2) is involved in cholesterol synthesis by translocating to the nucleus where it stimulates the transcription of genes encoding enzymes involved in the cholesterol synthesis pathway. However, the function and regulatory mechanism of SREBP2 in HCC remain unclear. In this study, we aimed to gain a better understanding of the effects of SREBP2 and its functional mechanism in HCC. In 20 HCC patients, we demonstrated that SREBP2 was highly expressed in HCC specimens, relative to their peritumoral tissue, and that higher expression correlated positively with a poor prognosis in these patients. Moreover, higher SREBP2 levels in the nucleus enhanced the occurrence of microvascular invasion, whereas inhibition of SREBP2 nuclear translocation by fatostatin markedly suppressed the migration and invasion of HCC cells via the epithelial–mesenchymal transition (EMT) process. The effects of SREBP2 were subject to functional activity of large tumor suppressor kinase (LATS), whereas inhibition of LATS promoted nuclear translocation of SREBP2, as observed in hepatoma cells and a subset of subcutaneous tumor samples from nude mice. In conclusion, SREBP2 enhances the invasion and metastasis of HCC cells by promoting EMT, which can be strengthened by the repression of LATS. Therefore, SREBP2 may serve as a novel therapeutic target for HCC.
科研通智能强力驱动
Strongly Powered by AbleSci AI