Attention Multihop Graph and Multiscale Convolutional Fusion Network for Hyperspectral Image Classification

计算机科学 人工智能 模式识别(心理学) 卷积神经网络 图形 高光谱成像 核(代数) 保险丝(电气) 像素 特征提取 理论计算机科学 数学 组合数学 电气工程 工程类
作者
Hao Zhou,Fulin Luo,Huiping Zhuang,Zhenyu Weng,Xiuwen Gong,Zhiping Lin
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:142
标识
DOI:10.1109/tgrs.2023.3265879
摘要

Convolutional neural networks (CNNs) for hyperspectral image (HSI) classification have generated good progress. Meanwhile, graph convolutional networks (GCNs) have also attracted considerable attention by using unlabeled data, broadly and explicitly exploiting correlations between adjacent parcels. However, the CNN with a fixed square convolution kernel is not flexible enough to deal with irregular patterns, while the GCN using the superpixel to reduce the number of nodes will lose the pixel-level features, and the features from the two networks are always partial. In this article, to make good use of the advantages of CNN and GCN, we propose a novel multiple feature fusion model termed attention multihop graph and multiscale convolutional fusion network (AMGCFN), which includes two subnetworks of multiscale fully CNN and multihop GCN to extract the multilevel information of HSI. Specifically, the multiscale fully CNN aims to comprehensively capture pixel-level features with different kernel sizes, and a multihead attention fusion module (MAFM) is used to fuse the multiscale pixel-level features. The multihop GCN systematically aggregates the multihop contextual information by applying multihop graphs on different layers to transform the relationships between nodes, and an MAFM is adopted to combine the multihop features. Finally, we design a cross-attention fusion module (CAFM) to adaptively fuse the features of two subnetworks. The AMGCFN makes full use of multiscale convolution and multihop graph features, which is conducive to the learning of multilevel contextual semantic features. Experimental results on three benchmark HSI datasets show that the AMGCFN has a better performance than a few state-of-the-art methods. Code: https://github.com/EdwardHaoz/IEEE_TGRS_AMGCFN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ceeray23应助小海豹采纳,获得10
刚刚
英俊芷发布了新的文献求助10
1秒前
2秒前
九宝发布了新的文献求助10
2秒前
dd发布了新的文献求助10
3秒前
3秒前
饱满南松发布了新的文献求助10
3秒前
隐形的巴豆完成签到,获得积分10
3秒前
4秒前
4秒前
Yaon-Xu发布了新的文献求助30
5秒前
5秒前
6秒前
苏九凉完成签到,获得积分10
7秒前
科研通AI6应助sjfczyh采纳,获得10
7秒前
见青山完成签到,获得积分10
8秒前
8秒前
YHY发布了新的文献求助10
8秒前
丘比特应助饱满南松采纳,获得10
9秒前
9秒前
11秒前
北冥有大鱼完成签到,获得积分10
11秒前
12秒前
13秒前
李健的粉丝团团长应助YHY采纳,获得10
14秒前
buno应助YHY采纳,获得10
14秒前
852应助YHY采纳,获得10
14秒前
彭于晏应助王珂采纳,获得10
14秒前
共享精神应助YHY采纳,获得10
14秒前
14秒前
15秒前
慕青应助一棵树莓采纳,获得10
15秒前
diandian1108完成签到 ,获得积分10
16秒前
Yaon-Xu完成签到,获得积分10
17秒前
17秒前
蜻蜓队长前来报道7完成签到,获得积分10
17秒前
张飞飞飞飞飞完成签到,获得积分10
18秒前
鸡鱼蚝发布了新的文献求助10
18秒前
饱满南松发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5566814
求助须知:如何正确求助?哪些是违规求助? 4651492
关于积分的说明 14696596
捐赠科研通 4593548
什么是DOI,文献DOI怎么找? 2520215
邀请新用户注册赠送积分活动 1492434
关于科研通互助平台的介绍 1463528