亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Attention Multihop Graph and Multiscale Convolutional Fusion Network for Hyperspectral Image Classification

计算机科学 人工智能 模式识别(心理学) 卷积神经网络 图形 高光谱成像 核(代数) 保险丝(电气) 像素 特征提取 理论计算机科学 数学 组合数学 电气工程 工程类
作者
Hao Zhou,Fulin Luo,Huiping Zhuang,Zhenyu Weng,Xiuwen Gong,Zhiping Lin
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:96
标识
DOI:10.1109/tgrs.2023.3265879
摘要

Convolutional neural networks (CNNs) for hyperspectral image (HSI) classification have generated good progress. Meanwhile, graph convolutional networks (GCNs) have also attracted considerable attention by using unlabeled data, broadly and explicitly exploiting correlations between adjacent parcels. However, the CNN with a fixed square convolution kernel is not flexible enough to deal with irregular patterns, while the GCN using the superpixel to reduce the number of nodes will lose the pixel-level features, and the features from the two networks are always partial. In this paper, to make good use of the advantages of CNN and GCN, we propose a novel multiple feature fusion model termed attention multi-hop graph and multi-scale convolutional fusion network (AMGCFN), which includes two sub-networks of multi-scale fully CNN and multi-hop GCN to extract the multi-level information of HSI. Specifically, the multi-scale fully CNN aims to comprehensively capture pixel-level features with different kernel sizes, and a multi-head attention fusion module is used to fuse the multi-scale pixel-level features. The multi-hop GCN systematically aggregates the multi-hop contextual information by applying multi-hop graphs on different layers to transform the relationships between nodes, and a multi-head attention fusion module is adopted to combine the multi-hop features. Finally, we design a cross attention fusion module to adaptively fuse the features of two sub-networks. AMGCFN makes full use of multi-scale convolution and multi-hop graph features, which is conducive to the learning of multi-level contextual semantic features. Experimental results on three benchmark HSI datasets show that AMGCFN has better performance than a few state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
11秒前
11秒前
15秒前
llll发布了新的文献求助10
16秒前
大模型应助亭瞳采纳,获得10
18秒前
32秒前
35秒前
35秒前
科研通AI6应助Alay采纳,获得50
38秒前
亭瞳发布了新的文献求助10
40秒前
Alay完成签到,获得积分10
48秒前
55秒前
科研通AI5应助科研通管家采纳,获得10
59秒前
59秒前
GingerF应助科研通管家采纳,获得200
59秒前
在水一方应助科研通管家采纳,获得10
59秒前
花花123发布了新的文献求助10
1分钟前
1分钟前
等待吐司完成签到,获得积分10
1分钟前
1分钟前
llll发布了新的文献求助10
1分钟前
秋招没招了关注了科研通微信公众号
1分钟前
今夕何夕完成签到,获得积分10
1分钟前
1分钟前
万能图书馆应助亭瞳采纳,获得10
1分钟前
badadaa完成签到 ,获得积分10
1分钟前
Lucas应助mdjinij采纳,获得10
1分钟前
breeze完成签到,获得积分10
1分钟前
KIKI完成签到 ,获得积分10
1分钟前
1分钟前
mdjinij发布了新的文献求助10
1分钟前
1分钟前
1分钟前
一指墨发布了新的文献求助20
1分钟前
一指墨完成签到,获得积分10
2分钟前
思源应助秋招没招了采纳,获得10
2分钟前
2分钟前
今后应助花花123采纳,获得10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5279817
求助须知:如何正确求助?哪些是违规求助? 4434853
关于积分的说明 13805724
捐赠科研通 4314589
什么是DOI,文献DOI怎么找? 2368097
邀请新用户注册赠送积分活动 1363535
关于科研通互助平台的介绍 1326724