Attention Multihop Graph and Multiscale Convolutional Fusion Network for Hyperspectral Image Classification

计算机科学 人工智能 模式识别(心理学) 卷积神经网络 图形 高光谱成像 核(代数) 保险丝(电气) 像素 特征提取 理论计算机科学 数学 组合数学 电气工程 工程类
作者
Hao Zhou,Fulin Luo,Huiping Zhuang,Zhenyu Weng,Xiuwen Gong,Zhiping Lin
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:67
标识
DOI:10.1109/tgrs.2023.3265879
摘要

Convolutional neural networks (CNNs) for hyperspectral image (HSI) classification have generated good progress. Meanwhile, graph convolutional networks (GCNs) have also attracted considerable attention by using unlabeled data, broadly and explicitly exploiting correlations between adjacent parcels. However, the CNN with a fixed square convolution kernel is not flexible enough to deal with irregular patterns, while the GCN using the superpixel to reduce the number of nodes will lose the pixel-level features, and the features from the two networks are always partial. In this paper, to make good use of the advantages of CNN and GCN, we propose a novel multiple feature fusion model termed attention multi-hop graph and multi-scale convolutional fusion network (AMGCFN), which includes two sub-networks of multi-scale fully CNN and multi-hop GCN to extract the multi-level information of HSI. Specifically, the multi-scale fully CNN aims to comprehensively capture pixel-level features with different kernel sizes, and a multi-head attention fusion module is used to fuse the multi-scale pixel-level features. The multi-hop GCN systematically aggregates the multi-hop contextual information by applying multi-hop graphs on different layers to transform the relationships between nodes, and a multi-head attention fusion module is adopted to combine the multi-hop features. Finally, we design a cross attention fusion module to adaptively fuse the features of two sub-networks. AMGCFN makes full use of multi-scale convolution and multi-hop graph features, which is conducive to the learning of multi-level contextual semantic features. Experimental results on three benchmark HSI datasets show that AMGCFN has better performance than a few state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
www完成签到,获得积分10
刚刚
千空完成签到,获得积分10
刚刚
超级台灯完成签到 ,获得积分10
刚刚
自由冬亦完成签到,获得积分10
1秒前
yungge完成签到,获得积分10
3秒前
4秒前
赘婿应助稳重伊采纳,获得10
4秒前
向卉完成签到,获得积分10
4秒前
scienceL完成签到,获得积分10
4秒前
吃水果的老虎完成签到,获得积分10
5秒前
6秒前
Donny完成签到,获得积分10
6秒前
6秒前
6秒前
OnionJJ应助山见山采纳,获得10
6秒前
Kay完成签到,获得积分10
7秒前
李健应助看文献的高光谱采纳,获得10
7秒前
yungge发布了新的文献求助10
8秒前
咿呀咿呀完成签到 ,获得积分10
8秒前
去看海嘛完成签到,获得积分10
8秒前
去看海嘛应助South朝484采纳,获得10
8秒前
9秒前
9秒前
王三完成签到,获得积分10
10秒前
cwq921发布了新的文献求助10
10秒前
10秒前
奕初阳发布了新的文献求助10
10秒前
Lilla辣辣完成签到 ,获得积分10
10秒前
仁者无惧完成签到 ,获得积分10
11秒前
江任意西完成签到 ,获得积分10
11秒前
wwf完成签到,获得积分20
11秒前
壮观以松完成签到 ,获得积分10
11秒前
11秒前
12秒前
华仔应助qiqi采纳,获得10
12秒前
司徒迎曼发布了新的文献求助10
13秒前
runtang完成签到,获得积分10
13秒前
13秒前
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151396
求助须知:如何正确求助?哪些是违规求助? 2802862
关于积分的说明 7850843
捐赠科研通 2460290
什么是DOI,文献DOI怎么找? 1309701
科研通“疑难数据库(出版商)”最低求助积分说明 628997
版权声明 601760