Marginalized Augmented Few-Shot Domain Adaptation

弹丸 适应(眼睛) 域适应 领域(数学分析) 计算机科学 人工智能 地理 心理学 数学 数学分析 材料科学 神经科学 分类器(UML) 冶金
作者
Taotao Jing,Haifeng Xia,Jihun Hamm,Zhengming Ding
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (9): 12459-12469 被引量:11
标识
DOI:10.1109/tnnls.2023.3263176
摘要

Domain adaptation (DA) has recently drawn a lot of attention, as it facilitates unlabeled target learning by borrowing knowledge from an external source domain. Most existing DA solutions seek to align feature representations between the labeled source and unlabeled target data. However, the scarcity of target data easily results in negative transfer, as it misleads the cross DA to the dominance of the source. To address the challenging few-shot domain adaptation (FSDA) problem, in this article, we propose a novel marginalized augmented FSDA (MAF) approach to address the cross-domain distribution disparity and insufficiency of target data simultaneously. On the one hand, cross-domain continuity augmentation (CCA) synthesizes abundant intermediate patterns across domains leading to a continuous domain-invariant latent space. On the other hand, sufficient source-supervised semantic augmentation (SSA) is explored to progressively diversify the conditional distribution within and across domains. Moreover, the proposed augmentation strategies are implemented efficiently via an expected transferable cross-entropy (CE) loss over the augmented distribution instead of explicit data synthesis, and minimizing the upper bound of the expected loss introduces negligible extra computing cost. Experimentally, our method outperforms the state of the art in various FSDA benchmarks, which demonstrates the effectiveness and contribution of our work. Our source code is provided at https://github.com/scottjingtt/MAF.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
材料小王子完成签到 ,获得积分10
1秒前
2秒前
whl完成签到 ,获得积分10
3秒前
3秒前
3秒前
kris发布了新的文献求助10
3秒前
4秒前
研友_VZG7GZ应助chaowei采纳,获得10
4秒前
庾稀发布了新的文献求助10
5秒前
DrLiu完成签到,获得积分10
6秒前
xjl完成签到,获得积分10
6秒前
谥輄发布了新的文献求助10
7秒前
洁净大神完成签到,获得积分10
7秒前
8秒前
8秒前
漫漫发布了新的文献求助10
8秒前
852应助北国采纳,获得10
10秒前
华仔应助小智采纳,获得10
10秒前
程风破浪发布了新的文献求助10
11秒前
Stella完成签到,获得积分10
12秒前
三物发布了新的文献求助10
12秒前
coke完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
13秒前
AXXXin完成签到 ,获得积分10
13秒前
lll完成签到 ,获得积分10
13秒前
Ran完成签到,获得积分10
16秒前
16秒前
17秒前
18秒前
胖虎不胖发布了新的文献求助10
18秒前
甜筒发布了新的文献求助10
18秒前
18秒前
19秒前
陶瓷小罐完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助10
20秒前
心儿发布了新的文献求助10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959733
求助须知:如何正确求助?哪些是违规求助? 3506004
关于积分的说明 11127299
捐赠科研通 3237957
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871741
科研通“疑难数据库(出版商)”最低求助积分说明 803000