已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DMGSTCN: Dynamic Multi-Graph Spatio-Temporal Convolution Network for Traffic Forecasting

计算机科学 卷积(计算机科学) 图形 理论计算机科学 人工智能 人工神经网络
作者
Yanjun Qin,Xiaoming Tao,Yuchen Fang,Haiyong Luo,Fang Zhao,Chenxing Wang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (12): 22208-22219
标识
DOI:10.1109/jiot.2024.3380746
摘要

Traffic forecasting belongs to intelligent transportation systems and is helpful for public property and life safety. Therefore, to forecast traffic accurately, researchers pay great attention to dealing with complex problems by mining intricate spatial and temporal dependencies of the traffic. However, some challenges still hold back traffic forecasting: 1) Most studies mainly focus on modeling correlations of traffic time series of close distances on the road network and ignore correlations of remote but similar traffic time series; 2) Previous static graph-based methods failed to reflect the dynamic changed spatial relations of multiple time series in the evolving traffic system. To tackle the above issues, we design a new dynamic multi-graph spatio-temporal convolution network (DMGSTCN) in this paper, which utilizes the gated causal convolution with the dynamic multi-graph convolution network (DMGCN) to simultaneously extract spatial and temporal information. Specifically, DMGCN uses not only distance-based graphs but also structure-based graphs to obtain spatial information from nearby and remote but similar traffic time series, respectively. Moreover, to dynamically model spatial correlations, DMGCN first splits neighbors of each traffic time series into different regions according to relative position relationships. Then DMGCN assigns different weights to different regions at different time slices. Empirical evaluations on four traffic forecasting benchmarks reveal that DMGSTCN outperforms existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
令狐惜海发布了新的文献求助10
1秒前
2秒前
2秒前
完美世界应助多多多多采纳,获得10
2秒前
李总要发财小苏发文章完成签到,获得积分10
3秒前
halo1994发布了新的文献求助10
3秒前
4秒前
路路发布了新的文献求助10
4秒前
5秒前
伶俐的背包完成签到,获得积分10
6秒前
Mimi发布了新的文献求助50
6秒前
6秒前
7秒前
小二郎应助jiwoong采纳,获得10
7秒前
啊啦啦完成签到,获得积分10
8秒前
稳重的向松完成签到,获得积分20
8秒前
10秒前
jersey完成签到,获得积分20
11秒前
11秒前
12秒前
谢海亮发布了新的文献求助10
13秒前
周志轩66发布了新的文献求助10
14秒前
多多多多发布了新的文献求助10
15秒前
隐形曼青应助恩佐采纳,获得10
18秒前
19秒前
Xieyusen发布了新的文献求助10
23秒前
舒伯特完成签到 ,获得积分10
24秒前
greentea完成签到,获得积分10
24秒前
ekswai发布了新的文献求助10
24秒前
26秒前
鳗鱼不尤发布了新的文献求助10
28秒前
1123完成签到,获得积分20
29秒前
余凉发布了新的文献求助30
32秒前
33秒前
量子星尘发布了新的文献求助10
34秒前
35秒前
昵称666应助1123采纳,获得10
35秒前
大姿兰卡眼睛完成签到 ,获得积分10
36秒前
36秒前
悟格完成签到,获得积分10
37秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956786
求助须知:如何正确求助?哪些是违规求助? 3502880
关于积分的说明 11110500
捐赠科研通 3233866
什么是DOI,文献DOI怎么找? 1787630
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802172