DMGSTCN: Dynamic Multi-Graph Spatio-Temporal Convolution Network for Traffic Forecasting

计算机科学 卷积(计算机科学) 图形 理论计算机科学 人工智能 人工神经网络
作者
Yanjun Qin,Xiaoming Tao,Yuchen Fang,Haiyong Luo,Fang Zhao,Chenxing Wang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (12): 22208-22219
标识
DOI:10.1109/jiot.2024.3380746
摘要

Traffic forecasting belongs to intelligent transportation systems and is helpful for public property and life safety. Therefore, to forecast traffic accurately, researchers pay great attention to dealing with complex problems by mining intricate spatial and temporal dependencies of the traffic. However, some challenges still hold back traffic forecasting: 1) Most studies mainly focus on modeling correlations of traffic time series of close distances on the road network and ignore correlations of remote but similar traffic time series; 2) Previous static graph-based methods failed to reflect the dynamic changed spatial relations of multiple time series in the evolving traffic system. To tackle the above issues, we design a new dynamic multi-graph spatio-temporal convolution network (DMGSTCN) in this paper, which utilizes the gated causal convolution with the dynamic multi-graph convolution network (DMGCN) to simultaneously extract spatial and temporal information. Specifically, DMGCN uses not only distance-based graphs but also structure-based graphs to obtain spatial information from nearby and remote but similar traffic time series, respectively. Moreover, to dynamically model spatial correlations, DMGCN first splits neighbors of each traffic time series into different regions according to relative position relationships. Then DMGCN assigns different weights to different regions at different time slices. Empirical evaluations on four traffic forecasting benchmarks reveal that DMGSTCN outperforms existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
于是真的完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
2秒前
懒得可爱完成签到,获得积分10
2秒前
共享精神应助66大顺采纳,获得10
2秒前
11完成签到,获得积分20
2秒前
3秒前
snowwwwwwwwfox完成签到,获得积分10
3秒前
自由饼干完成签到,获得积分10
3秒前
Sean完成签到,获得积分10
3秒前
humorr发布了新的文献求助10
4秒前
111完成签到,获得积分20
4秒前
Bian完成签到,获得积分10
4秒前
martiniwine发布了新的文献求助10
4秒前
瞬间默念发布了新的文献求助10
4秒前
冷酷路灯完成签到,获得积分10
4秒前
lpd完成签到,获得积分10
4秒前
4秒前
qiaokizhang发布了新的文献求助10
4秒前
5秒前
ENG发布了新的文献求助10
5秒前
快乐人杰完成签到,获得积分10
5秒前
5秒前
乐观的眼睛完成签到,获得积分10
6秒前
嗯哼应助东dong采纳,获得20
6秒前
糖果完成签到,获得积分10
6秒前
QING发布了新的文献求助10
6秒前
斯文败类应助wos采纳,获得10
6秒前
lovekobe发布了新的文献求助10
6秒前
在水一方应助微垣采纳,获得10
6秒前
yzy发布了新的文献求助10
7秒前
7秒前
7秒前
老叶发布了新的文献求助20
7秒前
刘爷发布了新的文献求助30
7秒前
8秒前
脑洞疼应助梦之哆啦采纳,获得10
8秒前
柠檬完成签到 ,获得积分10
8秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155255
求助须知:如何正确求助?哪些是违规求助? 2806077
关于积分的说明 7867955
捐赠科研通 2464459
什么是DOI,文献DOI怎么找? 1311849
科研通“疑难数据库(出版商)”最低求助积分说明 629777
版权声明 601862