Research on multi-model imaging machine learning for distinguishing early hepatocellular carcinoma

肝细胞癌 医学 人工智能 支持向量机 放射科 无线电技术 机器学习 肝硬化 计算机科学 内科学
作者
Ya Ma,Yue Gong,Qingtao Qiu,Changsheng Ma,Shuang Yu
出处
期刊:BMC Cancer [Springer Nature]
卷期号:24 (1)
标识
DOI:10.1186/s12885-024-12109-9
摘要

Abstract Objective To investigate the value of differential diagnosis of hepatocellular carcinoma (HCC) and non-hepatocellular carcinoma (non-HCC) based on CT and MR multiphase radiomics combined with different machine learning models and compare the diagnostic efficacy between different radiomics models. Background Primary liver cancer is one of the most common clinical malignancies, hepatocellular carcinoma (HCC) is the most common subtype of primary liver cancer, accounting for approximately 90% of cases. A clear diagnosis of HCC is important for the individualized treatment of patients with HCC. However, more sophisticated diagnostic modalities need to be explored. Methods This retrospective study included 211 patients with liver lesions: 97 HCC and 124 non-hepatocellular carcinoma (non-HCC) who underwent CT and MRI. Imaging data were used to obtain imaging features of lesions and radiomics regions of interest (ROI). The extracted imaging features were combined to construct different radiomics models. The clinical data and imaging features were then combined with radiomics features to construct the combined models. Support Vector Machine (SVM), K-nearest Neighbor (KNN), RandomForest (RF), eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), Multilayer Perceptron (MLP) six machine learning models were used for training. Five-fold cross-validation was used to train the models, and ROC curves were used to analyze the diagnostic efficacy of each model and calculate the accuracy rate. Model training and efficacy test were performed as before. Results Statistical analysis showed that some clinical data (gender and concomitant cirrhosis) and imaging features (presence of envelope, marked enhancement in the arterial phase, rapid contouring in the portal phase, uniform density/signal and concomitant steatosis) were statistical differences ( P < 0.001). The results of machine learning models showed that KNN had the best diagnostic efficacy. The results of the combined model showed that SVM had the best diagnostic efficacy, indicating that the combined model (accuracy 0.824) had better diagnostic efficacy than the radiomics-only model. Conclusions Our results demonstrate that the radiomic features of CT and MRI combined with machine learning models enable differential diagnosis of HCC and non-HCC (malignant, benign). The diagnostic model with dual radiomic had better diagnostic efficacy. The combined model was superior to the radiomic model alone.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
冷傲星月完成签到,获得积分10
3秒前
ao完成签到,获得积分10
3秒前
陈chq完成签到,获得积分10
4秒前
神勇凝冬发布了新的文献求助10
4秒前
4秒前
zqz发布了新的文献求助30
4秒前
5秒前
7秒前
兔BF完成签到,获得积分10
8秒前
sjh发布了新的文献求助10
8秒前
8秒前
老张发布了新的文献求助10
8秒前
8秒前
sam发布了新的文献求助10
9秒前
9秒前
肖恩完成签到,获得积分10
9秒前
menimeni完成签到,获得积分10
10秒前
Lucas应助鲜艳的绮菱采纳,获得30
10秒前
10秒前
所所应助羊羊的蛙采纳,获得10
12秒前
12秒前
科研通AI2S应助球球采纳,获得10
13秒前
mmm发布了新的文献求助10
13秒前
Zgf完成签到,获得积分10
13秒前
小顾发布了新的文献求助10
14秒前
15秒前
15秒前
开心市民小刘完成签到,获得积分10
16秒前
17秒前
刘英俊发布了新的文献求助10
17秒前
CipherSage应助大号安全蛋采纳,获得10
18秒前
18秒前
斯文败类应助fmr采纳,获得10
19秒前
叶十七发布了新的文献求助10
19秒前
海盐气泡水完成签到,获得积分10
19秒前
mingjie发布了新的文献求助10
20秒前
20秒前
吴定洲完成签到,获得积分10
22秒前
22秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148165
求助须知:如何正确求助?哪些是违规求助? 2799249
关于积分的说明 7834127
捐赠科研通 2456451
什么是DOI,文献DOI怎么找? 1307282
科研通“疑难数据库(出版商)”最低求助积分说明 628124
版权声明 601655