Research on multi-model imaging machine learning for distinguishing early hepatocellular carcinoma

肝细胞癌 医学 人工智能 支持向量机 放射科 无线电技术 机器学习 肝硬化 计算机科学 内科学
作者
Ya Ma,Yue Gong,Qingtao Qiu,Changsheng Ma,Shuang Yu
出处
期刊:BMC Cancer [Springer Nature]
卷期号:24 (1)
标识
DOI:10.1186/s12885-024-12109-9
摘要

Abstract Objective To investigate the value of differential diagnosis of hepatocellular carcinoma (HCC) and non-hepatocellular carcinoma (non-HCC) based on CT and MR multiphase radiomics combined with different machine learning models and compare the diagnostic efficacy between different radiomics models. Background Primary liver cancer is one of the most common clinical malignancies, hepatocellular carcinoma (HCC) is the most common subtype of primary liver cancer, accounting for approximately 90% of cases. A clear diagnosis of HCC is important for the individualized treatment of patients with HCC. However, more sophisticated diagnostic modalities need to be explored. Methods This retrospective study included 211 patients with liver lesions: 97 HCC and 124 non-hepatocellular carcinoma (non-HCC) who underwent CT and MRI. Imaging data were used to obtain imaging features of lesions and radiomics regions of interest (ROI). The extracted imaging features were combined to construct different radiomics models. The clinical data and imaging features were then combined with radiomics features to construct the combined models. Support Vector Machine (SVM), K-nearest Neighbor (KNN), RandomForest (RF), eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), Multilayer Perceptron (MLP) six machine learning models were used for training. Five-fold cross-validation was used to train the models, and ROC curves were used to analyze the diagnostic efficacy of each model and calculate the accuracy rate. Model training and efficacy test were performed as before. Results Statistical analysis showed that some clinical data (gender and concomitant cirrhosis) and imaging features (presence of envelope, marked enhancement in the arterial phase, rapid contouring in the portal phase, uniform density/signal and concomitant steatosis) were statistical differences ( P < 0.001). The results of machine learning models showed that KNN had the best diagnostic efficacy. The results of the combined model showed that SVM had the best diagnostic efficacy, indicating that the combined model (accuracy 0.824) had better diagnostic efficacy than the radiomics-only model. Conclusions Our results demonstrate that the radiomic features of CT and MRI combined with machine learning models enable differential diagnosis of HCC and non-HCC (malignant, benign). The diagnostic model with dual radiomic had better diagnostic efficacy. The combined model was superior to the radiomic model alone.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助Roderick采纳,获得10
2秒前
3秒前
笑点低蜜蜂完成签到,获得积分10
3秒前
zm发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
思源应助竹蜻蜓采纳,获得10
4秒前
6秒前
6秒前
7秒前
青争发布了新的文献求助10
7秒前
洛城l发布了新的文献求助10
10秒前
10秒前
12秒前
zinc完成签到 ,获得积分10
12秒前
a1313发布了新的文献求助10
13秒前
LY发布了新的文献求助10
14秒前
隐形曼青应助wuxunxun2015采纳,获得10
15秒前
15秒前
15秒前
qqq完成签到,获得积分10
17秒前
小蘑菇应助小不点采纳,获得30
17秒前
17秒前
竹蜻蜓发布了新的文献求助10
19秒前
19秒前
able1325完成签到 ,获得积分10
19秒前
19秒前
顾矜应助LY采纳,获得10
20秒前
JamesPei应助Li采纳,获得10
21秒前
21秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
dc发布了新的文献求助10
22秒前
dfggg发布了新的文献求助30
22秒前
泡泡泡芙发布了新的文献求助30
24秒前
小张发布了新的文献求助10
27秒前
小贾发布了新的文献求助10
27秒前
Lucas应助威武的皮卡丘采纳,获得10
28秒前
29秒前
30秒前
科研通AI2S应助tangrzh采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5598857
求助须知:如何正确求助?哪些是违规求助? 4684254
关于积分的说明 14834399
捐赠科研通 4665126
什么是DOI,文献DOI怎么找? 2537490
邀请新用户注册赠送积分活动 1504943
关于科研通互助平台的介绍 1470655