亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Research on multi-model imaging machine learning for distinguishing early hepatocellular carcinoma

肝细胞癌 医学 人工智能 支持向量机 放射科 无线电技术 机器学习 肝硬化 计算机科学 内科学
作者
Ya Ma,Yue Gong,Qingtao Qiu,Changsheng Ma,Shuang Yu
出处
期刊:BMC Cancer [Springer Nature]
卷期号:24 (1)
标识
DOI:10.1186/s12885-024-12109-9
摘要

Abstract Objective To investigate the value of differential diagnosis of hepatocellular carcinoma (HCC) and non-hepatocellular carcinoma (non-HCC) based on CT and MR multiphase radiomics combined with different machine learning models and compare the diagnostic efficacy between different radiomics models. Background Primary liver cancer is one of the most common clinical malignancies, hepatocellular carcinoma (HCC) is the most common subtype of primary liver cancer, accounting for approximately 90% of cases. A clear diagnosis of HCC is important for the individualized treatment of patients with HCC. However, more sophisticated diagnostic modalities need to be explored. Methods This retrospective study included 211 patients with liver lesions: 97 HCC and 124 non-hepatocellular carcinoma (non-HCC) who underwent CT and MRI. Imaging data were used to obtain imaging features of lesions and radiomics regions of interest (ROI). The extracted imaging features were combined to construct different radiomics models. The clinical data and imaging features were then combined with radiomics features to construct the combined models. Support Vector Machine (SVM), K-nearest Neighbor (KNN), RandomForest (RF), eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), Multilayer Perceptron (MLP) six machine learning models were used for training. Five-fold cross-validation was used to train the models, and ROC curves were used to analyze the diagnostic efficacy of each model and calculate the accuracy rate. Model training and efficacy test were performed as before. Results Statistical analysis showed that some clinical data (gender and concomitant cirrhosis) and imaging features (presence of envelope, marked enhancement in the arterial phase, rapid contouring in the portal phase, uniform density/signal and concomitant steatosis) were statistical differences ( P < 0.001). The results of machine learning models showed that KNN had the best diagnostic efficacy. The results of the combined model showed that SVM had the best diagnostic efficacy, indicating that the combined model (accuracy 0.824) had better diagnostic efficacy than the radiomics-only model. Conclusions Our results demonstrate that the radiomic features of CT and MRI combined with machine learning models enable differential diagnosis of HCC and non-HCC (malignant, benign). The diagnostic model with dual radiomic had better diagnostic efficacy. The combined model was superior to the radiomic model alone.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
妮子发布了新的社区帖子
4秒前
阿乐完成签到 ,获得积分10
9秒前
lily给ZJakariae的求助进行了留言
10秒前
22秒前
24秒前
27秒前
小o发布了新的文献求助10
30秒前
38秒前
karstbing完成签到,获得积分10
39秒前
46秒前
54秒前
lily完成签到,获得积分10
55秒前
上官若男应助妮子采纳,获得30
59秒前
共享精神应助小o采纳,获得10
1分钟前
1分钟前
1分钟前
Arron完成签到,获得积分10
1分钟前
1分钟前
汤317完成签到,获得积分10
1分钟前
yuzuiris完成签到 ,获得积分10
1分钟前
1分钟前
Estrella发布了新的文献求助10
1分钟前
1121完成签到 ,获得积分10
1分钟前
Estrella完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
赘婿应助zy采纳,获得10
1分钟前
Zongxin应助千早爱音采纳,获得100
1分钟前
1分钟前
ding应助托塔大王采纳,获得10
1分钟前
二三语逢山外山完成签到 ,获得积分10
1分钟前
zy发布了新的文献求助10
2分钟前
2分钟前
zy完成签到,获得积分10
2分钟前
2分钟前
我不到啊完成签到 ,获得积分10
2分钟前
2分钟前
重庆森林完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595676
求助须知:如何正确求助?哪些是违规求助? 4680968
关于积分的说明 14818069
捐赠科研通 4651636
什么是DOI,文献DOI怎么找? 2535574
邀请新用户注册赠送积分活动 1503527
关于科研通互助平台的介绍 1469754