Research on multi-model imaging machine learning for distinguishing early hepatocellular carcinoma

肝细胞癌 医学 人工智能 支持向量机 放射科 无线电技术 机器学习 肝硬化 计算机科学 内科学
作者
Ya Ma,Yue Gong,Qingtao Qiu,Changsheng Ma,Shuang Yu
出处
期刊:BMC Cancer [Springer Nature]
卷期号:24 (1)
标识
DOI:10.1186/s12885-024-12109-9
摘要

Abstract Objective To investigate the value of differential diagnosis of hepatocellular carcinoma (HCC) and non-hepatocellular carcinoma (non-HCC) based on CT and MR multiphase radiomics combined with different machine learning models and compare the diagnostic efficacy between different radiomics models. Background Primary liver cancer is one of the most common clinical malignancies, hepatocellular carcinoma (HCC) is the most common subtype of primary liver cancer, accounting for approximately 90% of cases. A clear diagnosis of HCC is important for the individualized treatment of patients with HCC. However, more sophisticated diagnostic modalities need to be explored. Methods This retrospective study included 211 patients with liver lesions: 97 HCC and 124 non-hepatocellular carcinoma (non-HCC) who underwent CT and MRI. Imaging data were used to obtain imaging features of lesions and radiomics regions of interest (ROI). The extracted imaging features were combined to construct different radiomics models. The clinical data and imaging features were then combined with radiomics features to construct the combined models. Support Vector Machine (SVM), K-nearest Neighbor (KNN), RandomForest (RF), eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), Multilayer Perceptron (MLP) six machine learning models were used for training. Five-fold cross-validation was used to train the models, and ROC curves were used to analyze the diagnostic efficacy of each model and calculate the accuracy rate. Model training and efficacy test were performed as before. Results Statistical analysis showed that some clinical data (gender and concomitant cirrhosis) and imaging features (presence of envelope, marked enhancement in the arterial phase, rapid contouring in the portal phase, uniform density/signal and concomitant steatosis) were statistical differences ( P < 0.001). The results of machine learning models showed that KNN had the best diagnostic efficacy. The results of the combined model showed that SVM had the best diagnostic efficacy, indicating that the combined model (accuracy 0.824) had better diagnostic efficacy than the radiomics-only model. Conclusions Our results demonstrate that the radiomic features of CT and MRI combined with machine learning models enable differential diagnosis of HCC and non-HCC (malignant, benign). The diagnostic model with dual radiomic had better diagnostic efficacy. The combined model was superior to the radiomic model alone.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助vikoel采纳,获得10
1秒前
小蘑菇应助Chen采纳,获得10
1秒前
余笑发布了新的文献求助10
2秒前
兴奋的问旋完成签到,获得积分10
2秒前
juni应助ZQ采纳,获得20
2秒前
熊熊熊发布了新的文献求助10
3秒前
violet完成签到,获得积分10
3秒前
3秒前
大青虫521发布了新的文献求助10
3秒前
4秒前
酷波er应助Liyipu采纳,获得10
5秒前
走走走发布了新的文献求助10
5秒前
6秒前
6秒前
hejinyin完成签到,获得积分10
7秒前
思源应助假面绅士采纳,获得10
9秒前
Orange应助假面绅士采纳,获得10
9秒前
大个应助假面绅士采纳,获得10
9秒前
NexusExplorer应助假面绅士采纳,获得10
9秒前
我是老大应助假面绅士采纳,获得10
9秒前
9秒前
干净的时光应助假面绅士采纳,获得10
9秒前
ca0ca0发布了新的文献求助10
9秒前
乐乐应助假面绅士采纳,获得10
9秒前
打打应助假面绅士采纳,获得10
9秒前
隐形曼青应助假面绅士采纳,获得10
9秒前
大模型应助LZHDICP采纳,获得10
9秒前
vikoel完成签到,获得积分10
10秒前
余笑完成签到,获得积分10
10秒前
睡洋洋发布了新的文献求助10
10秒前
Lumos发布了新的文献求助10
11秒前
罗_应助念淰采纳,获得10
11秒前
费城青年完成签到,获得积分10
11秒前
超進化完成签到 ,获得积分10
12秒前
12秒前
12秒前
12秒前
顺利的爆米花完成签到 ,获得积分10
13秒前
朴实的香露完成签到,获得积分10
13秒前
ww完成签到,获得积分10
14秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3083043
求助须知:如何正确求助?哪些是违规求助? 2736283
关于积分的说明 7540658
捐赠科研通 2385697
什么是DOI,文献DOI怎么找? 1265066
科研通“疑难数据库(出版商)”最低求助积分说明 612909
版权声明 597702