已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Research on multi-model imaging machine learning for distinguishing early hepatocellular carcinoma

肝细胞癌 医学 人工智能 支持向量机 放射科 无线电技术 机器学习 肝硬化 计算机科学 内科学
作者
Ya Ma,Yue Gong,Qingtao Qiu,Changsheng Ma,Shuang Yu
出处
期刊:BMC Cancer [Springer Nature]
卷期号:24 (1)
标识
DOI:10.1186/s12885-024-12109-9
摘要

Abstract Objective To investigate the value of differential diagnosis of hepatocellular carcinoma (HCC) and non-hepatocellular carcinoma (non-HCC) based on CT and MR multiphase radiomics combined with different machine learning models and compare the diagnostic efficacy between different radiomics models. Background Primary liver cancer is one of the most common clinical malignancies, hepatocellular carcinoma (HCC) is the most common subtype of primary liver cancer, accounting for approximately 90% of cases. A clear diagnosis of HCC is important for the individualized treatment of patients with HCC. However, more sophisticated diagnostic modalities need to be explored. Methods This retrospective study included 211 patients with liver lesions: 97 HCC and 124 non-hepatocellular carcinoma (non-HCC) who underwent CT and MRI. Imaging data were used to obtain imaging features of lesions and radiomics regions of interest (ROI). The extracted imaging features were combined to construct different radiomics models. The clinical data and imaging features were then combined with radiomics features to construct the combined models. Support Vector Machine (SVM), K-nearest Neighbor (KNN), RandomForest (RF), eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), Multilayer Perceptron (MLP) six machine learning models were used for training. Five-fold cross-validation was used to train the models, and ROC curves were used to analyze the diagnostic efficacy of each model and calculate the accuracy rate. Model training and efficacy test were performed as before. Results Statistical analysis showed that some clinical data (gender and concomitant cirrhosis) and imaging features (presence of envelope, marked enhancement in the arterial phase, rapid contouring in the portal phase, uniform density/signal and concomitant steatosis) were statistical differences ( P < 0.001). The results of machine learning models showed that KNN had the best diagnostic efficacy. The results of the combined model showed that SVM had the best diagnostic efficacy, indicating that the combined model (accuracy 0.824) had better diagnostic efficacy than the radiomics-only model. Conclusions Our results demonstrate that the radiomic features of CT and MRI combined with machine learning models enable differential diagnosis of HCC and non-HCC (malignant, benign). The diagnostic model with dual radiomic had better diagnostic efficacy. The combined model was superior to the radiomic model alone.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助张涵晟采纳,获得10
1秒前
JamesPei应助张涵晟采纳,获得10
1秒前
共享精神应助张涵晟采纳,获得10
1秒前
JamesPei应助张涵晟采纳,获得10
1秒前
Lucas应助张涵晟采纳,获得10
1秒前
丘比特应助张涵晟采纳,获得10
1秒前
隐形曼青应助张涵晟采纳,获得10
1秒前
OK完成签到 ,获得积分10
2秒前
Kq_完成签到,获得积分10
2秒前
辛勤的龙猫应助Ginger采纳,获得10
3秒前
优秀的傲南完成签到,获得积分10
4秒前
无极微光应助环境恢复采纳,获得20
4秒前
7秒前
7秒前
华仔应助张涵晟采纳,获得10
7秒前
7秒前
乐乐应助张涵晟采纳,获得10
7秒前
传奇3应助张涵晟采纳,获得10
8秒前
我是老大应助张涵晟采纳,获得30
8秒前
小二郎应助张涵晟采纳,获得10
8秒前
小蘑菇应助张涵晟采纳,获得30
8秒前
8秒前
在水一方应助张涵晟采纳,获得10
8秒前
打打应助张涵晟采纳,获得10
8秒前
赘婿应助张涵晟采纳,获得10
8秒前
小二郎应助张涵晟采纳,获得10
8秒前
小蘑菇应助科研迪采纳,获得10
9秒前
9秒前
10秒前
bkagyin应助Shelley采纳,获得10
11秒前
无私糖豆发布了新的文献求助10
11秒前
亘木发布了新的文献求助10
13秒前
13秒前
学术王王哥完成签到 ,获得积分10
13秒前
14秒前
Lexi28发布了新的文献求助10
14秒前
14秒前
天天快乐应助侯雨涵采纳,获得10
16秒前
wanci应助承乐采纳,获得10
16秒前
追寻的烤鸡完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5763203
求助须知:如何正确求助?哪些是违规求助? 5539414
关于积分的说明 15404436
捐赠科研通 4899064
什么是DOI,文献DOI怎么找? 2635276
邀请新用户注册赠送积分活动 1583372
关于科研通互助平台的介绍 1538497