Research on multi-model imaging machine learning for distinguishing early hepatocellular carcinoma

肝细胞癌 医学 人工智能 支持向量机 放射科 无线电技术 机器学习 肝硬化 计算机科学 内科学
作者
Ya Ma,Yue Gong,Qingtao Qiu,Changsheng Ma,Shuang Yu
出处
期刊:BMC Cancer [Springer Nature]
卷期号:24 (1)
标识
DOI:10.1186/s12885-024-12109-9
摘要

Abstract Objective To investigate the value of differential diagnosis of hepatocellular carcinoma (HCC) and non-hepatocellular carcinoma (non-HCC) based on CT and MR multiphase radiomics combined with different machine learning models and compare the diagnostic efficacy between different radiomics models. Background Primary liver cancer is one of the most common clinical malignancies, hepatocellular carcinoma (HCC) is the most common subtype of primary liver cancer, accounting for approximately 90% of cases. A clear diagnosis of HCC is important for the individualized treatment of patients with HCC. However, more sophisticated diagnostic modalities need to be explored. Methods This retrospective study included 211 patients with liver lesions: 97 HCC and 124 non-hepatocellular carcinoma (non-HCC) who underwent CT and MRI. Imaging data were used to obtain imaging features of lesions and radiomics regions of interest (ROI). The extracted imaging features were combined to construct different radiomics models. The clinical data and imaging features were then combined with radiomics features to construct the combined models. Support Vector Machine (SVM), K-nearest Neighbor (KNN), RandomForest (RF), eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), Multilayer Perceptron (MLP) six machine learning models were used for training. Five-fold cross-validation was used to train the models, and ROC curves were used to analyze the diagnostic efficacy of each model and calculate the accuracy rate. Model training and efficacy test were performed as before. Results Statistical analysis showed that some clinical data (gender and concomitant cirrhosis) and imaging features (presence of envelope, marked enhancement in the arterial phase, rapid contouring in the portal phase, uniform density/signal and concomitant steatosis) were statistical differences ( P < 0.001). The results of machine learning models showed that KNN had the best diagnostic efficacy. The results of the combined model showed that SVM had the best diagnostic efficacy, indicating that the combined model (accuracy 0.824) had better diagnostic efficacy than the radiomics-only model. Conclusions Our results demonstrate that the radiomic features of CT and MRI combined with machine learning models enable differential diagnosis of HCC and non-HCC (malignant, benign). The diagnostic model with dual radiomic had better diagnostic efficacy. The combined model was superior to the radiomic model alone.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
冯雨宁完成签到,获得积分10
3秒前
HHH发布了新的文献求助10
3秒前
myg8627发布了新的文献求助10
3秒前
懵懂的迎蓉关注了科研通微信公众号
4秒前
4秒前
bkagyin应助仙啾啾采纳,获得10
4秒前
4秒前
zhang发布了新的文献求助10
5秒前
ohh完成签到,获得积分10
5秒前
5秒前
7秒前
wanci应助王路飞采纳,获得10
7秒前
脑洞疼应助研友_Z63G18采纳,获得10
8秒前
研友_LX01RL完成签到,获得积分10
9秒前
9秒前
Amber发布了新的文献求助10
9秒前
深情安青应助海绵宝宝采纳,获得20
12秒前
14秒前
14秒前
美猴王完成签到 ,获得积分0
14秒前
花笙完成签到,获得积分10
15秒前
15秒前
CodeCraft应助走四方采纳,获得10
16秒前
赘婿应助mmqq采纳,获得10
17秒前
量子星尘发布了新的文献求助10
17秒前
王敏发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
星星发布了新的文献求助10
18秒前
18秒前
wangzhiqin发布了新的文献求助10
18秒前
19秒前
19秒前
徐徐图之发布了新的文献求助10
19秒前
科研通AI6应助RR采纳,获得10
19秒前
范占豪完成签到,获得积分10
20秒前
王路飞发布了新的文献求助10
20秒前
lsktoast发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5548412
求助须知:如何正确求助?哪些是违规求助? 4633745
关于积分的说明 14632589
捐赠科研通 4575424
什么是DOI,文献DOI怎么找? 2508974
邀请新用户注册赠送积分活动 1485169
关于科研通互助平台的介绍 1456179