Research on multi-model imaging machine learning for distinguishing early hepatocellular carcinoma

肝细胞癌 医学 人工智能 支持向量机 放射科 无线电技术 机器学习 肝硬化 计算机科学 内科学
作者
Ya Ma,Yue Gong,Qingtao Qiu,Changsheng Ma,Shuang Yu
出处
期刊:BMC Cancer [BioMed Central]
卷期号:24 (1)
标识
DOI:10.1186/s12885-024-12109-9
摘要

Abstract Objective To investigate the value of differential diagnosis of hepatocellular carcinoma (HCC) and non-hepatocellular carcinoma (non-HCC) based on CT and MR multiphase radiomics combined with different machine learning models and compare the diagnostic efficacy between different radiomics models. Background Primary liver cancer is one of the most common clinical malignancies, hepatocellular carcinoma (HCC) is the most common subtype of primary liver cancer, accounting for approximately 90% of cases. A clear diagnosis of HCC is important for the individualized treatment of patients with HCC. However, more sophisticated diagnostic modalities need to be explored. Methods This retrospective study included 211 patients with liver lesions: 97 HCC and 124 non-hepatocellular carcinoma (non-HCC) who underwent CT and MRI. Imaging data were used to obtain imaging features of lesions and radiomics regions of interest (ROI). The extracted imaging features were combined to construct different radiomics models. The clinical data and imaging features were then combined with radiomics features to construct the combined models. Support Vector Machine (SVM), K-nearest Neighbor (KNN), RandomForest (RF), eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), Multilayer Perceptron (MLP) six machine learning models were used for training. Five-fold cross-validation was used to train the models, and ROC curves were used to analyze the diagnostic efficacy of each model and calculate the accuracy rate. Model training and efficacy test were performed as before. Results Statistical analysis showed that some clinical data (gender and concomitant cirrhosis) and imaging features (presence of envelope, marked enhancement in the arterial phase, rapid contouring in the portal phase, uniform density/signal and concomitant steatosis) were statistical differences ( P < 0.001). The results of machine learning models showed that KNN had the best diagnostic efficacy. The results of the combined model showed that SVM had the best diagnostic efficacy, indicating that the combined model (accuracy 0.824) had better diagnostic efficacy than the radiomics-only model. Conclusions Our results demonstrate that the radiomic features of CT and MRI combined with machine learning models enable differential diagnosis of HCC and non-HCC (malignant, benign). The diagnostic model with dual radiomic had better diagnostic efficacy. The combined model was superior to the radiomic model alone.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hmhu发布了新的文献求助10
刚刚
qcy发布了新的文献求助10
刚刚
xz发布了新的文献求助10
刚刚
青菱青发布了新的文献求助10
刚刚
1秒前
手套完成签到,获得积分10
2秒前
和谐战斗机完成签到,获得积分10
3秒前
shan发布了新的文献求助10
4秒前
5秒前
niki发布了新的文献求助30
6秒前
endorphin发布了新的文献求助10
6秒前
踏实奇异果完成签到,获得积分10
8秒前
9秒前
浮游应助qcy采纳,获得10
9秒前
桐桐应助answer采纳,获得10
9秒前
doc发布了新的文献求助10
10秒前
杨昌琪发布了新的文献求助10
11秒前
Li应助积极的紫雪采纳,获得10
11秒前
12秒前
FLORA完成签到 ,获得积分10
12秒前
14秒前
niki完成签到,获得积分20
15秒前
玩命的语蝶完成签到,获得积分10
15秒前
16秒前
16秒前
喜欢听他唱歌完成签到,获得积分10
16秒前
共享精神应助科研通管家采纳,获得10
17秒前
脑洞疼应助科研通管家采纳,获得30
17秒前
华仔应助科研通管家采纳,获得30
17秒前
酷波er应助沉醉夜色采纳,获得10
17秒前
COSMAO应助科研通管家采纳,获得10
17秒前
ding应助科研通管家采纳,获得10
17秒前
脑洞疼应助科研通管家采纳,获得10
17秒前
salan应助科研通管家采纳,获得40
18秒前
fifteen应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
唐泽雪穗应助科研通管家采纳,获得10
18秒前
完美世界应助科研通管家采纳,获得10
18秒前
CipherSage应助科研通管家采纳,获得10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
当代中国马克思主义问题意识研究 科学出版社 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4979500
求助须知:如何正确求助?哪些是违规求助? 4232187
关于积分的说明 13182437
捐赠科研通 4023165
什么是DOI,文献DOI怎么找? 2201193
邀请新用户注册赠送积分活动 1213667
关于科研通互助平台的介绍 1129839