材料科学
兴奋剂
软化
凝聚态物理
热电材料
热电效应
格子(音乐)
晶格常数
热力学
复合材料
光电子学
物理
光学
热导率
声学
衍射
作者
Ming Liu,Muchun Guo,Jianbo Zhu,X. L. Zeng,Hong Chen,Donglin Yuan,Qinyong Zhang,Fanggong Cai,Fengkai Guo,Yuke Zhu,Xufeng Dong,Wei Cai,Yongsheng Zhang,Yuan Yu,Jiehe Sui
标识
DOI:10.1002/adfm.202316075
摘要
Abstract Zintl compounds such as n‐type Mg 3 (Sb,Bi) 2 show promising thermoelectric applications benefiting from their high valley degeneracy and low lattice thermal conductivity. However, the heavier p‐type A Mg 2 X 2 ( A = Ca, and Yb; X = Bi and Sb) Zintl counterparts even exhibit a higher κ lat due to strong chemical bonding. Reducing κ lat of A Mg 2 X 2 is an important route for improving thermoelectric performance. Herein, it is found that Cd doping at the Mg site in CaMg 2 Bi 2 can weaken intralayer covalent bonds and soften acoustic phonons, as well as fill the optical phonon gap. These effects result in large atomic displacement, low phonon group velocity, and strong lattice vibration anharmonicity. Doping 10% Cd leads to a reduction of 56% in the κ lat of CaMg 2 Bi 2 . Moreover, Cd doping promotes orbital alignment and thus increases the density‐of‐states effective mass and Seebeck coefficient. Eventually, in conjunction with carrier concentration optimization by Na doping and band structure engineering by Ba doping, a high ZT of ≈1.3 at 873 K in (Ca 0.85 Ba 0.15 ) 0.995 Na 0.005 Mg 1.85 Cd 0.15 Bi 2 sample is realized. This work highlights the significant role of manipulating chemical bonding in suppressing phonon propagation of semiconductors.
科研通智能强力驱动
Strongly Powered by AbleSci AI