Studying logging practice in machine learning-based applications

登录中 计算机科学 软件工程 林业 地理
作者
Patrick Loic Foalem,Foutse Khomh,Heng Li
出处
期刊:Information & Software Technology [Elsevier BV]
卷期号:170: 107450-107450
标识
DOI:10.1016/j.infsof.2024.107450
摘要

Logging is a common practice in traditional software development. There have been multiple studies on the characteristics of logging in traditional software systems such as C/C++, Java, and Android applications. However, logging practices in Machine Learning-based (ML-based) applications are still not well understood. The size and complexity of data and models used in ML-based applications present unique challenges for logging. In this paper, we aim to bridge this knowledge gap and provide insight into the logging practices in ML-based applications, making the first attempt to characterize current logging practices within a large number of open-source ML-based applications. We conducted an empirical study on 502 open-source ML applications to understand their logging practices, combining quantitative and qualitative analyses and a survey involving 31 practitioners. Our quantitative analysis reveals that logging in ML applications is less common than in traditional software, with info and warn log levels being popular. Top ML-specific logging libraries include MLflow, Tensorboard, Neptune, and W&B. Qualitatively, logging is used for data and model management, especially in model training. Our survey reinforces the importance of logging in experiment tracking, complementing our qualitative findings. Our research carries significant implications. It reveals distinctive ML logging practices compared to traditional software. We have highlighted the prevalence of general-purpose logging libraries in ML code, indicating a potential gap in awareness regarding ML-specific logging tools. This insight benefits researchers and developers aiming to enhance ML project reproducibility and sets the stage for exploring ML-specific logging tools' impact on machine learning system quality and trustworthiness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿媛呐完成签到,获得积分10
刚刚
刚刚
Dank1ng完成签到,获得积分10
1秒前
1秒前
勤奋的凌香完成签到,获得积分10
2秒前
2秒前
范晓阳发布了新的文献求助10
3秒前
阔达的乌冬面完成签到,获得积分10
3秒前
活着完成签到,获得积分10
3秒前
yyyfff应助1028181661采纳,获得10
3秒前
3秒前
林夕完成签到,获得积分10
3秒前
桐桐应助王世缘采纳,获得10
4秒前
芝士完成签到 ,获得积分10
4秒前
大个应助科研通管家采纳,获得10
5秒前
怎么说应助科研通管家采纳,获得30
5秒前
脑洞疼应助AliceWong采纳,获得10
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
怎么说应助科研通管家采纳,获得10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得30
5秒前
wanci应助科研通管家采纳,获得30
5秒前
冬不拉的红糖纸完成签到,获得积分20
5秒前
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
郑雨霏完成签到,获得积分10
5秒前
吴泽奇发布了新的文献求助10
6秒前
森林完成签到 ,获得积分10
6秒前
aliao发布了新的文献求助10
6秒前
呼呼呼完成签到 ,获得积分10
7秒前
WC241002292完成签到,获得积分10
7秒前
7秒前
畅快的文龙完成签到,获得积分10
7秒前
严溯完成签到,获得积分10
8秒前
桐桐应助lyra采纳,获得10
8秒前
MYYY完成签到,获得积分10
8秒前
惠惠发布了新的文献求助10
8秒前
8秒前
JamesPei应助安全平静采纳,获得10
9秒前
风中的元菱完成签到,获得积分10
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968771
求助须知:如何正确求助?哪些是违规求助? 3513646
关于积分的说明 11169065
捐赠科研通 3249011
什么是DOI,文献DOI怎么找? 1794589
邀请新用户注册赠送积分活动 875236
科研通“疑难数据库(出版商)”最低求助积分说明 804740