Studying logging practice in machine learning-based applications

登录中 计算机科学 软件工程 林业 地理
作者
Patrick Loic Foalem,Foutse Khomh,Heng Li
出处
期刊:Information & Software Technology [Elsevier]
卷期号:170: 107450-107450
标识
DOI:10.1016/j.infsof.2024.107450
摘要

Logging is a common practice in traditional software development. There have been multiple studies on the characteristics of logging in traditional software systems such as C/C++, Java, and Android applications. However, logging practices in Machine Learning-based (ML-based) applications are still not well understood. The size and complexity of data and models used in ML-based applications present unique challenges for logging. In this paper, we aim to bridge this knowledge gap and provide insight into the logging practices in ML-based applications, making the first attempt to characterize current logging practices within a large number of open-source ML-based applications. We conducted an empirical study on 502 open-source ML applications to understand their logging practices, combining quantitative and qualitative analyses and a survey involving 31 practitioners. Our quantitative analysis reveals that logging in ML applications is less common than in traditional software, with info and warn log levels being popular. Top ML-specific logging libraries include MLflow, Tensorboard, Neptune, and W&B. Qualitatively, logging is used for data and model management, especially in model training. Our survey reinforces the importance of logging in experiment tracking, complementing our qualitative findings. Our research carries significant implications. It reveals distinctive ML logging practices compared to traditional software. We have highlighted the prevalence of general-purpose logging libraries in ML code, indicating a potential gap in awareness regarding ML-specific logging tools. This insight benefits researchers and developers aiming to enhance ML project reproducibility and sets the stage for exploring ML-specific logging tools' impact on machine learning system quality and trustworthiness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
姚11驳回了Arrebol应助
2秒前
李健应助沐竡采纳,获得10
2秒前
田様应助Zhangchen采纳,获得30
2秒前
慕青应助oylonq采纳,获得10
3秒前
Silvia完成签到,获得积分10
4秒前
zheng完成签到 ,获得积分10
4秒前
5秒前
叮叮车发布了新的文献求助10
5秒前
成就若颜完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
8秒前
xingfangshu发布了新的文献求助10
9秒前
彪壮的梨愁完成签到,获得积分10
10秒前
林夏完成签到,获得积分10
10秒前
zw发布了新的文献求助10
12秒前
凝心完成签到,获得积分10
12秒前
残酷的风完成签到,获得积分10
13秒前
思源应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
Ava应助科研通管家采纳,获得10
14秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
寻道图强应助科研通管家采纳,获得30
14秒前
赵一丁完成签到,获得积分10
14秒前
领导范儿应助科研通管家采纳,获得10
14秒前
动听的飞松完成签到 ,获得积分10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
寻道图强应助科研通管家采纳,获得30
14秒前
CipherSage应助科研通管家采纳,获得10
14秒前
英姑应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
orixero应助科研通管家采纳,获得10
14秒前
无花果应助科研通管家采纳,获得10
14秒前
14秒前
李爱国应助科研通管家采纳,获得10
14秒前
CipherSage应助科研通管家采纳,获得10
15秒前
星辰大海应助科研通管家采纳,获得10
15秒前
汉堡包应助科研通管家采纳,获得10
15秒前
打打应助科研通管家采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418855
求助须知:如何正确求助?哪些是违规求助? 4534461
关于积分的说明 14144301
捐赠科研通 4450736
什么是DOI,文献DOI怎么找? 2441342
邀请新用户注册赠送积分活动 1433062
关于科研通互助平台的介绍 1410502