Studying logging practice in machine learning-based applications

登录中 计算机科学 软件工程 林业 地理
作者
Patrick Loic Foalem,Foutse Khomh,Heng Li
出处
期刊:Information & Software Technology [Elsevier BV]
卷期号:170: 107450-107450
标识
DOI:10.1016/j.infsof.2024.107450
摘要

Logging is a common practice in traditional software development. There have been multiple studies on the characteristics of logging in traditional software systems such as C/C++, Java, and Android applications. However, logging practices in Machine Learning-based (ML-based) applications are still not well understood. The size and complexity of data and models used in ML-based applications present unique challenges for logging. In this paper, we aim to bridge this knowledge gap and provide insight into the logging practices in ML-based applications, making the first attempt to characterize current logging practices within a large number of open-source ML-based applications. We conducted an empirical study on 502 open-source ML applications to understand their logging practices, combining quantitative and qualitative analyses and a survey involving 31 practitioners. Our quantitative analysis reveals that logging in ML applications is less common than in traditional software, with info and warn log levels being popular. Top ML-specific logging libraries include MLflow, Tensorboard, Neptune, and W&B. Qualitatively, logging is used for data and model management, especially in model training. Our survey reinforces the importance of logging in experiment tracking, complementing our qualitative findings. Our research carries significant implications. It reveals distinctive ML logging practices compared to traditional software. We have highlighted the prevalence of general-purpose logging libraries in ML code, indicating a potential gap in awareness regarding ML-specific logging tools. This insight benefits researchers and developers aiming to enhance ML project reproducibility and sets the stage for exploring ML-specific logging tools' impact on machine learning system quality and trustworthiness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
脑洞疼应助VAN喵采纳,获得10
1秒前
桐桐应助zhaoyuyuan采纳,获得10
1秒前
HH发布了新的文献求助10
2秒前
科研通AI2S应助CCCr采纳,获得10
2秒前
斯文雅旋发布了新的文献求助10
2秒前
开心仙人掌完成签到,获得积分10
2秒前
2秒前
qqjssb发布了新的文献求助10
2秒前
传奇3应助夜猫采纳,获得10
3秒前
4秒前
郭丰完成签到,获得积分10
4秒前
夏侯一手发布了新的文献求助10
4秒前
5秒前
6秒前
Frankyu完成签到,获得积分10
6秒前
热情大树发布了新的文献求助10
7秒前
WANGCHU完成签到,获得积分10
7秒前
jj完成签到,获得积分20
8秒前
量子星尘发布了新的文献求助10
9秒前
1028181661完成签到,获得积分10
9秒前
CHENCHEN完成签到,获得积分10
9秒前
10秒前
R_发布了新的文献求助10
10秒前
WANGCHU发布了新的文献求助10
11秒前
可爱的小树苗完成签到,获得积分10
11秒前
zyh完成签到,获得积分10
11秒前
12秒前
misu完成签到,获得积分10
12秒前
12秒前
自信寻真完成签到,获得积分10
12秒前
fmy完成签到,获得积分10
12秒前
13秒前
lingxi1296应助樱悼柳雪采纳,获得10
13秒前
13秒前
beifa完成签到,获得积分10
13秒前
顺利静竹完成签到,获得积分20
13秒前
传奇3应助小蚂蚁采纳,获得10
13秒前
lucky完成签到,获得积分10
13秒前
BINGBING发布了新的文献求助10
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974426
求助须知:如何正确求助?哪些是违规求助? 3518788
关于积分的说明 11195842
捐赠科研通 3254946
什么是DOI,文献DOI怎么找? 1797649
邀请新用户注册赠送积分活动 877037
科研通“疑难数据库(出版商)”最低求助积分说明 806130