Studying logging practice in machine learning-based applications

登录中 计算机科学 软件工程 林业 地理
作者
Patrick Loic Foalem,Foutse Khomh,Heng Li
出处
期刊:Information & Software Technology [Elsevier]
卷期号:170: 107450-107450
标识
DOI:10.1016/j.infsof.2024.107450
摘要

Logging is a common practice in traditional software development. There have been multiple studies on the characteristics of logging in traditional software systems such as C/C++, Java, and Android applications. However, logging practices in Machine Learning-based (ML-based) applications are still not well understood. The size and complexity of data and models used in ML-based applications present unique challenges for logging. In this paper, we aim to bridge this knowledge gap and provide insight into the logging practices in ML-based applications, making the first attempt to characterize current logging practices within a large number of open-source ML-based applications. We conducted an empirical study on 502 open-source ML applications to understand their logging practices, combining quantitative and qualitative analyses and a survey involving 31 practitioners. Our quantitative analysis reveals that logging in ML applications is less common than in traditional software, with info and warn log levels being popular. Top ML-specific logging libraries include MLflow, Tensorboard, Neptune, and W&B. Qualitatively, logging is used for data and model management, especially in model training. Our survey reinforces the importance of logging in experiment tracking, complementing our qualitative findings. Our research carries significant implications. It reveals distinctive ML logging practices compared to traditional software. We have highlighted the prevalence of general-purpose logging libraries in ML code, indicating a potential gap in awareness regarding ML-specific logging tools. This insight benefits researchers and developers aiming to enhance ML project reproducibility and sets the stage for exploring ML-specific logging tools' impact on machine learning system quality and trustworthiness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助笠原May采纳,获得10
1秒前
haiyangzhao发布了新的文献求助10
2秒前
3秒前
科研通AI6应助科研通管家采纳,获得50
3秒前
Owen应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
FanFan应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
4秒前
zxszxs发布了新的文献求助10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
eric888应助科研通管家采纳,获得10
4秒前
爱库珀应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
背后一江完成签到,获得积分10
5秒前
丘比特应助Li818采纳,获得10
5秒前
彭于晏应助zhenganw采纳,获得10
5秒前
7秒前
苹果柜子完成签到,获得积分10
7秒前
8秒前
10秒前
11秒前
12秒前
12秒前
13秒前
猪猪hero应助soma997采纳,获得10
13秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
qxm发布了新的文献求助10
17秒前
jeremypan发布了新的文献求助20
17秒前
17秒前
zhenganw发布了新的文献求助10
18秒前
文艺凌旋发布了新的文献求助10
19秒前
21秒前
SSSYYY完成签到,获得积分10
23秒前
24秒前
动听的天晴完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604083
求助须知:如何正确求助?哪些是违规求助? 4688908
关于积分的说明 14856973
捐赠科研通 4696430
什么是DOI,文献DOI怎么找? 2541128
邀请新用户注册赠送积分活动 1507314
关于科研通互助平台的介绍 1471851