Studying logging practice in machine learning-based applications

登录中 计算机科学 软件工程 林业 地理
作者
Patrick Loic Foalem,Foutse Khomh,Heng Li
出处
期刊:Information & Software Technology [Elsevier]
卷期号:170: 107450-107450
标识
DOI:10.1016/j.infsof.2024.107450
摘要

Logging is a common practice in traditional software development. There have been multiple studies on the characteristics of logging in traditional software systems such as C/C++, Java, and Android applications. However, logging practices in Machine Learning-based (ML-based) applications are still not well understood. The size and complexity of data and models used in ML-based applications present unique challenges for logging. In this paper, we aim to bridge this knowledge gap and provide insight into the logging practices in ML-based applications, making the first attempt to characterize current logging practices within a large number of open-source ML-based applications. We conducted an empirical study on 502 open-source ML applications to understand their logging practices, combining quantitative and qualitative analyses and a survey involving 31 practitioners. Our quantitative analysis reveals that logging in ML applications is less common than in traditional software, with info and warn log levels being popular. Top ML-specific logging libraries include MLflow, Tensorboard, Neptune, and W&B. Qualitatively, logging is used for data and model management, especially in model training. Our survey reinforces the importance of logging in experiment tracking, complementing our qualitative findings. Our research carries significant implications. It reveals distinctive ML logging practices compared to traditional software. We have highlighted the prevalence of general-purpose logging libraries in ML code, indicating a potential gap in awareness regarding ML-specific logging tools. This insight benefits researchers and developers aiming to enhance ML project reproducibility and sets the stage for exploring ML-specific logging tools' impact on machine learning system quality and trustworthiness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李总督大人完成签到,获得积分10
刚刚
大模型应助RedBoy采纳,获得10
刚刚
李6666完成签到 ,获得积分10
刚刚
huhu完成签到,获得积分20
1秒前
11220完成签到,获得积分10
2秒前
2秒前
2秒前
小王发布了新的文献求助10
2秒前
senli2018发布了新的文献求助10
3秒前
4秒前
开朗惊蛰完成签到,获得积分10
4秒前
swenn_1完成签到 ,获得积分10
4秒前
隐形曼青应助fengliurencai采纳,获得10
4秒前
CodeCraft应助鱼选采纳,获得10
5秒前
6秒前
8秒前
Yolanda发布了新的文献求助10
8秒前
8秒前
8秒前
mmichaell完成签到,获得积分10
9秒前
9秒前
煜钧发布了新的文献求助30
9秒前
Freeman0721发布了新的文献求助10
9秒前
Akim应助hizto采纳,获得10
10秒前
11秒前
aa发布了新的文献求助10
11秒前
12秒前
12秒前
GUAN完成签到 ,获得积分10
13秒前
huhu发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
14秒前
时深完成签到 ,获得积分10
15秒前
16秒前
Cherish完成签到,获得积分10
17秒前
spirit完成签到 ,获得积分10
17秒前
浮游应助大半个菜鸟采纳,获得10
17秒前
完美世界应助大半个菜鸟采纳,获得10
17秒前
velsaber发布了新的文献求助20
18秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453924
求助须知:如何正确求助?哪些是违规求助? 4561398
关于积分的说明 14282445
捐赠科研通 4485367
什么是DOI,文献DOI怎么找? 2456697
邀请新用户注册赠送积分活动 1447383
关于科研通互助平台的介绍 1422701