已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Studying logging practice in machine learning-based applications

登录中 计算机科学 软件工程 林业 地理
作者
Patrick Loic Foalem,Foutse Khomh,Heng Li
出处
期刊:Information & Software Technology [Elsevier BV]
卷期号:170: 107450-107450
标识
DOI:10.1016/j.infsof.2024.107450
摘要

Logging is a common practice in traditional software development. There have been multiple studies on the characteristics of logging in traditional software systems such as C/C++, Java, and Android applications. However, logging practices in Machine Learning-based (ML-based) applications are still not well understood. The size and complexity of data and models used in ML-based applications present unique challenges for logging. In this paper, we aim to bridge this knowledge gap and provide insight into the logging practices in ML-based applications, making the first attempt to characterize current logging practices within a large number of open-source ML-based applications. We conducted an empirical study on 502 open-source ML applications to understand their logging practices, combining quantitative and qualitative analyses and a survey involving 31 practitioners. Our quantitative analysis reveals that logging in ML applications is less common than in traditional software, with info and warn log levels being popular. Top ML-specific logging libraries include MLflow, Tensorboard, Neptune, and W&B. Qualitatively, logging is used for data and model management, especially in model training. Our survey reinforces the importance of logging in experiment tracking, complementing our qualitative findings. Our research carries significant implications. It reveals distinctive ML logging practices compared to traditional software. We have highlighted the prevalence of general-purpose logging libraries in ML code, indicating a potential gap in awareness regarding ML-specific logging tools. This insight benefits researchers and developers aiming to enhance ML project reproducibility and sets the stage for exploring ML-specific logging tools' impact on machine learning system quality and trustworthiness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
耍酷如柏完成签到,获得积分10
3秒前
Owen应助杨欣采纳,获得10
3秒前
善学以致用应助杨欣采纳,获得10
3秒前
Jasper应助杨欣采纳,获得10
3秒前
桐桐应助杨欣采纳,获得10
3秒前
脑洞疼应助杨欣采纳,获得10
3秒前
three发布了新的文献求助10
4秒前
math123完成签到,获得积分10
5秒前
兜兜完成签到,获得积分10
7秒前
NexusExplorer应助南风采纳,获得30
8秒前
Esther完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
张之静完成签到,获得积分10
11秒前
11秒前
11秒前
琪琪完成签到 ,获得积分10
12秒前
12秒前
math123发布了新的文献求助10
13秒前
Nancy完成签到,获得积分10
13秒前
终于花开日完成签到 ,获得积分10
14秒前
哈哈哈哈发布了新的文献求助10
14秒前
研友_VZG7GZ应助远志采纳,获得10
14秒前
mouxq发布了新的文献求助10
16秒前
16秒前
浮游应助谁会采纳,获得10
17秒前
17秒前
wlei9534发布了新的文献求助200
18秒前
找不到气得跳脚完成签到 ,获得积分10
18秒前
张之静发布了新的文献求助10
20秒前
21秒前
1111发布了新的文献求助200
21秒前
科研通AI6应助lcx采纳,获得10
22秒前
zhangnan完成签到 ,获得积分10
23秒前
FashionBoy应助大圣采纳,获得10
25秒前
言论发布了新的文献求助10
25秒前
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934509
求助须知:如何正确求助?哪些是违规求助? 4202404
关于积分的说明 13057258
捐赠科研通 3976729
什么是DOI,文献DOI怎么找? 2179167
邀请新用户注册赠送积分活动 1195395
关于科研通互助平台的介绍 1106744