Studying logging practice in machine learning-based applications

登录中 计算机科学 软件工程 林业 地理
作者
Patrick Loic Foalem,Foutse Khomh,Heng Li
出处
期刊:Information & Software Technology [Elsevier BV]
卷期号:170: 107450-107450
标识
DOI:10.1016/j.infsof.2024.107450
摘要

Logging is a common practice in traditional software development. There have been multiple studies on the characteristics of logging in traditional software systems such as C/C++, Java, and Android applications. However, logging practices in Machine Learning-based (ML-based) applications are still not well understood. The size and complexity of data and models used in ML-based applications present unique challenges for logging. In this paper, we aim to bridge this knowledge gap and provide insight into the logging practices in ML-based applications, making the first attempt to characterize current logging practices within a large number of open-source ML-based applications. We conducted an empirical study on 502 open-source ML applications to understand their logging practices, combining quantitative and qualitative analyses and a survey involving 31 practitioners. Our quantitative analysis reveals that logging in ML applications is less common than in traditional software, with info and warn log levels being popular. Top ML-specific logging libraries include MLflow, Tensorboard, Neptune, and W&B. Qualitatively, logging is used for data and model management, especially in model training. Our survey reinforces the importance of logging in experiment tracking, complementing our qualitative findings. Our research carries significant implications. It reveals distinctive ML logging practices compared to traditional software. We have highlighted the prevalence of general-purpose logging libraries in ML code, indicating a potential gap in awareness regarding ML-specific logging tools. This insight benefits researchers and developers aiming to enhance ML project reproducibility and sets the stage for exploring ML-specific logging tools' impact on machine learning system quality and trustworthiness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Elokuu_发布了新的文献求助10
刚刚
罐罐儿应助美好越彬采纳,获得10
2秒前
2秒前
大个应助李键刚采纳,获得10
3秒前
bibi发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
5秒前
江宜完成签到 ,获得积分10
7秒前
8秒前
stephenD完成签到,获得积分10
8秒前
gm完成签到,获得积分10
8秒前
9秒前
就这发布了新的文献求助10
9秒前
9秒前
YY完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
12秒前
qingniujushi发布了新的文献求助10
12秒前
12秒前
打打应助何姗悦采纳,获得10
12秒前
坦率凉面发布了新的文献求助20
12秒前
独特的绯完成签到,获得积分10
13秒前
YY发布了新的文献求助10
13秒前
13秒前
冷酷太清完成签到,获得积分10
14秒前
李键刚发布了新的文献求助10
14秒前
momoni完成签到 ,获得积分10
14秒前
李爱国应助轻松面包采纳,获得10
15秒前
小巧外套完成签到,获得积分10
16秒前
圆彰七大完成签到 ,获得积分10
16秒前
祝愿发布了新的文献求助10
16秒前
Elokuu_完成签到,获得积分10
17秒前
整齐的不评完成签到,获得积分10
17秒前
17秒前
小雨治大水完成签到,获得积分20
17秒前
reeedirect发布了新的文献求助10
17秒前
小小完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Ride comfort analysis of hydro-pneumatic suspension considering variable damping matched with dynamitic load 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4590079
求助须知:如何正确求助?哪些是违规求助? 4005062
关于积分的说明 12400100
捐赠科研通 3682035
什么是DOI,文献DOI怎么找? 2029370
邀请新用户注册赠送积分活动 1062987
科研通“疑难数据库(出版商)”最低求助积分说明 948589