Studying logging practice in machine learning-based applications

登录中 计算机科学 软件工程 林业 地理
作者
Patrick Loic Foalem,Foutse Khomh,Heng Li
出处
期刊:Information & Software Technology [Elsevier]
卷期号:170: 107450-107450
标识
DOI:10.1016/j.infsof.2024.107450
摘要

Logging is a common practice in traditional software development. There have been multiple studies on the characteristics of logging in traditional software systems such as C/C++, Java, and Android applications. However, logging practices in Machine Learning-based (ML-based) applications are still not well understood. The size and complexity of data and models used in ML-based applications present unique challenges for logging. In this paper, we aim to bridge this knowledge gap and provide insight into the logging practices in ML-based applications, making the first attempt to characterize current logging practices within a large number of open-source ML-based applications. We conducted an empirical study on 502 open-source ML applications to understand their logging practices, combining quantitative and qualitative analyses and a survey involving 31 practitioners. Our quantitative analysis reveals that logging in ML applications is less common than in traditional software, with info and warn log levels being popular. Top ML-specific logging libraries include MLflow, Tensorboard, Neptune, and W&B. Qualitatively, logging is used for data and model management, especially in model training. Our survey reinforces the importance of logging in experiment tracking, complementing our qualitative findings. Our research carries significant implications. It reveals distinctive ML logging practices compared to traditional software. We have highlighted the prevalence of general-purpose logging libraries in ML code, indicating a potential gap in awareness regarding ML-specific logging tools. This insight benefits researchers and developers aiming to enhance ML project reproducibility and sets the stage for exploring ML-specific logging tools' impact on machine learning system quality and trustworthiness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助kbkyvuy采纳,获得10
刚刚
1秒前
1秒前
yao发布了新的文献求助10
1秒前
ndsiu发布了新的文献求助10
1秒前
jun完成签到,获得积分10
1秒前
圆圆完成签到,获得积分10
2秒前
2秒前
2秒前
罗mian发布了新的文献求助10
3秒前
Orange应助tguczf采纳,获得10
3秒前
KevinT完成签到,获得积分10
3秒前
左丘白桃完成签到,获得积分10
4秒前
4秒前
du199944完成签到,获得积分10
4秒前
5秒前
米酒汤圆完成签到,获得积分10
5秒前
5秒前
5秒前
Sky发布了新的文献求助10
5秒前
左左完成签到,获得积分10
6秒前
BowieHuang应助iris2333采纳,获得10
7秒前
可爱的函函应助iris2333采纳,获得10
7秒前
桐桐应助iris2333采纳,获得10
7秒前
斯文败类应助iris2333采纳,获得10
7秒前
关你Peace完成签到,获得积分10
7秒前
SciGPT应助iris2333采纳,获得10
7秒前
Ava应助iris2333采纳,获得10
7秒前
香蕉觅云应助iris2333采纳,获得10
7秒前
顾矜应助iris2333采纳,获得10
7秒前
桐桐应助iris2333采纳,获得10
7秒前
科研通AI2S应助iris2333采纳,获得10
7秒前
大婷子发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
8秒前
8秒前
研友_VZG7GZ应助du199944采纳,获得10
8秒前
张玉完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545653
求助须知:如何正确求助?哪些是违规求助? 4631693
关于积分的说明 14621876
捐赠科研通 4573347
什么是DOI,文献DOI怎么找? 2507486
邀请新用户注册赠送积分活动 1484199
关于科研通互助平台的介绍 1455485