Studying logging practice in machine learning-based applications

登录中 计算机科学 软件工程 林业 地理
作者
Patrick Loic Foalem,Foutse Khomh,Heng Li
出处
期刊:Information & Software Technology [Elsevier]
卷期号:170: 107450-107450
标识
DOI:10.1016/j.infsof.2024.107450
摘要

Logging is a common practice in traditional software development. There have been multiple studies on the characteristics of logging in traditional software systems such as C/C++, Java, and Android applications. However, logging practices in Machine Learning-based (ML-based) applications are still not well understood. The size and complexity of data and models used in ML-based applications present unique challenges for logging. In this paper, we aim to bridge this knowledge gap and provide insight into the logging practices in ML-based applications, making the first attempt to characterize current logging practices within a large number of open-source ML-based applications. We conducted an empirical study on 502 open-source ML applications to understand their logging practices, combining quantitative and qualitative analyses and a survey involving 31 practitioners. Our quantitative analysis reveals that logging in ML applications is less common than in traditional software, with info and warn log levels being popular. Top ML-specific logging libraries include MLflow, Tensorboard, Neptune, and W&B. Qualitatively, logging is used for data and model management, especially in model training. Our survey reinforces the importance of logging in experiment tracking, complementing our qualitative findings. Our research carries significant implications. It reveals distinctive ML logging practices compared to traditional software. We have highlighted the prevalence of general-purpose logging libraries in ML code, indicating a potential gap in awareness regarding ML-specific logging tools. This insight benefits researchers and developers aiming to enhance ML project reproducibility and sets the stage for exploring ML-specific logging tools' impact on machine learning system quality and trustworthiness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzn发布了新的文献求助10
刚刚
浅香千雪发布了新的文献求助10
2秒前
3秒前
5秒前
Jolene66发布了新的文献求助10
6秒前
8秒前
随遇而安完成签到,获得积分10
9秒前
hyl-tcm完成签到,获得积分10
10秒前
糖醋里脊加醋完成签到 ,获得积分10
10秒前
桐桐应助Dr_Ma采纳,获得10
11秒前
pengyi发布了新的文献求助30
12秒前
fei完成签到,获得积分20
14秒前
14秒前
美好山槐发布了新的文献求助10
16秒前
youyou糍粑完成签到,获得积分10
17秒前
Orange应助Bake采纳,获得10
17秒前
19秒前
19秒前
Keqi完成签到,获得积分10
20秒前
跳跃的太君完成签到,获得积分10
20秒前
wsl完成签到 ,获得积分10
20秒前
美好山槐完成签到,获得积分10
23秒前
youyou糍粑发布了新的文献求助10
24秒前
打打应助小晴天采纳,获得10
25秒前
25秒前
25秒前
26秒前
虚花完成签到 ,获得积分10
26秒前
26秒前
踏实的幻姬完成签到,获得积分10
27秒前
斯文败类应助pengyi采纳,获得10
27秒前
CodeCraft应助丰富夜安采纳,获得10
28秒前
28秒前
zzn完成签到,获得积分20
29秒前
Dr_Ma发布了新的文献求助10
30秒前
隐形曼青应助小药丸采纳,获得10
31秒前
Leon_Kim发布了新的文献求助10
31秒前
登山观海发布了新的文献求助10
32秒前
小猪坨发布了新的文献求助10
32秒前
33秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3407536
求助须知:如何正确求助?哪些是违规求助? 3012106
关于积分的说明 8852366
捐赠科研通 2699189
什么是DOI,文献DOI怎么找? 1479880
科研通“疑难数据库(出版商)”最低求助积分说明 684088
邀请新用户注册赠送积分活动 678345