Multi-scale full spike pattern for semantic segmentation

Spike(软件开发) 计算机科学 分割 人工智能 模式识别(心理学) 比例(比率) 提炼听神经的脉冲 自然语言处理 地图学 地理 软件工程
作者
Qingchao Su,Weihua He,Xiaobao Wei,Bo Xu,Guoqi Li
出处
期刊:Neural Networks [Elsevier]
卷期号:: 106330-106330
标识
DOI:10.1016/j.neunet.2024.106330
摘要

Spiking neural networks (SNNs), as the brain-inspired neural networks, encode information in spatio-temporal dynamics. They have the potential to serve as low-power alternatives to artificial neural networks (ANNs) due to their sparse and event-driven nature. However, existing SNN-based models for pixel-level semantic segmentation tasks suffer from poor performance and high memory overhead, failing to fully exploit the computational effectiveness and efficiency of SNNs. To address these challenges, we propose the multi-scale and full spike segmentation network (MFS-Seg), which is based on the deep direct trained SNN and represents the first attempt to train a deep SNN with surrogate gradients for semantic segmentation. Specifically, we design an efficient fully-spike residual block (EFS-Res) to alleviate representation issues caused by spiking noise on different channels. EFS-Res utilizes depthwise separable convolution to improve the distributions of spiking feature maps. The visualization shows that our model can effectively extract the edge features of segmented objects. Furthermore, it can significantly reduce the memory overhead and energy consumption of the network. In addition, we theoretically analyze and prove that EFS-Res can avoid the degradation problem based on block dynamical isometry theory. Experimental results on the Camvid dataset, the DDD17 dataset, and the DSEC-Semantic dataset show that our model achieves comparable performance to the mainstream UNet network with up to 31× fewer parameters, while significantly reducing power consumption by over 13×. Overall, our MFS-Seg model demonstrates promising results in terms of performance, memory efficiency, and energy consumption, showcasing the potential of deep SNNs for semantic segmentation tasks. Our code is available in https://github.com/BICLab/MFS-Seg.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李麟发布了新的文献求助80
1秒前
徐per爱豆发布了新的文献求助10
4秒前
一一关注了科研通微信公众号
5秒前
yumu关注了科研通微信公众号
5秒前
6秒前
xmy驳回了充电宝应助
6秒前
11秒前
团团完成签到,获得积分10
11秒前
張医铄完成签到,获得积分10
11秒前
12秒前
Ann发布了新的文献求助10
12秒前
13秒前
幽壑之潜蛟应助星辰采纳,获得10
13秒前
14秒前
可爱的函函应助动次打次采纳,获得10
14秒前
情怀应助李麟采纳,获得10
14秒前
kikiii完成签到 ,获得积分10
15秒前
如意烨霖发布了新的文献求助20
15秒前
16秒前
AliHamid发布了新的文献求助10
17秒前
17秒前
彭于晏应助毕十三采纳,获得10
17秒前
coco完成签到,获得积分20
18秒前
18秒前
18秒前
18秒前
研学完成签到,获得积分10
18秒前
Lillian发布了新的文献求助10
20秒前
娃娃兵完成签到,获得积分10
21秒前
mint发布了新的文献求助10
22秒前
xuulanni发布了新的文献求助10
23秒前
24秒前
白学长应助shuangcheng采纳,获得10
24秒前
24秒前
25秒前
26秒前
土豆丝P应助AliHamid采纳,获得10
26秒前
26秒前
闪闪雨雪完成签到,获得积分10
26秒前
27秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462526
求助须知:如何正确求助?哪些是违规求助? 3056054
关于积分的说明 9050624
捐赠科研通 2745705
什么是DOI,文献DOI怎么找? 1506521
科研通“疑难数据库(出版商)”最低求助积分说明 696165
邀请新用户注册赠送积分活动 695677