已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The Florida Scoring System for stratifying children with suspected Sjögren's disease: a cross-sectional machine learning study

医学 队列 潜在类模型 横断面研究 儿科 内科学 机器学习 病理 计算机科学
作者
Wenjie Zeng,Akaluck Thatayatikom,Nicole Winn,Tyler Lovelace,Indraneel Bhattacharyya,Thomas Schrepfer,Ankit Shah,Renato Gonik,Panayiotis V. Benos,Seunghee Cha
出处
期刊:The Lancet Rheumatology [Elsevier]
卷期号:6 (5): e279-e290 被引量:1
标识
DOI:10.1016/s2665-9913(24)00059-6
摘要

Background Childhood Sjögren's disease is a rare, underdiagnosed, and poorly-understood condition. By integrating machine learning models on a paediatric cohort in the USA, we aimed to develop a novel system (the Florida Scoring System) for stratifying symptomatic paediatric patients with suspected Sjögren's disease. Methods This cross-sectional study was done in symptomatic patients who visited the Department of Pediatric Rheumatology at the University of Florida, FL, USA. Eligible patients were younger than 18 years or had symptom onset before 18 years of age. Patients with confirmed diagnosis of another autoimmune condition or infection with a clear aetiological microorganism were excluded. Eligible patients underwent comprehensive examinations to rule out or diagnose childhood Sjögren's disease. We used latent class analysis with clinical and laboratory variables to detect heterogeneous patient classes. Machine learning models, including random forest, gradient-boosted decision tree, partial least square discriminatory analysis, least absolute shrinkage and selection operator-penalised ordinal regression, artificial neural network, and super learner were used to predict patient classes and rank the importance of variables. Causal graph learning selected key features to build the final Florida Scoring System. The predictors for all models were the clinical and laboratory variables and the outcome was the definition of patient classes. Findings Between Jan 16, 2018, and April 28, 2022, we screened 448 patients for inclusion. After excluding 205 patients due to symptom onset later than 18 years of age, we recruited 243 patients into our cohort. 26 patients were excluded because of confirmed diagnosis of a disorder other than Sjögren's disease, and 217 patients were included in the final analysis. Median age at diagnosis was 15 years (IQR 11–17). 155 (72%) of 216 patients were female and 61 (28%) were male, 167 (79%) of 212 were White, and 20 (9%) of 213 were Hispanic, Latino, or Spanish. The latent class analysis identified three distinct patient classes: class I (dryness dominant with positive tests, n=27), class II (high symptoms with negative tests, n=98), and class III (low symptoms with negative tests, n=92). Machine learning models accurately predicted patient class and ranked variable importance consistently. The causal graphical model discovered key features for constructing the Florida Scoring System. Interpretation The Florida Scoring System is a paediatrician-friendly tool that can be used to assist classification and long-term monitoring of suspected childhood Sjögren's disease. The resulting stratification has important implications for clinical management, trial design, and pathobiological research. We found a highly symptomatic patient group with negative serology and diagnostic profiles, which warrants clinical attention. We further revealed that salivary gland ultrasonography can be a non-invasive alternative to minor salivary gland biopsy in children. The Florida Scoring System requires validation in larger prospective paediatric cohorts. Funding National Institute of Dental and Craniofacial Research, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Heart, Lung, and Blood Institute, and Sjögren's Foundation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助aaaaa采纳,获得10
1秒前
1秒前
1秒前
人文完成签到 ,获得积分10
2秒前
丰富的寒蕾完成签到 ,获得积分10
3秒前
务实的筝完成签到,获得积分10
3秒前
4秒前
Mark完成签到 ,获得积分10
4秒前
yinlao完成签到,获得积分10
4秒前
魏行方完成签到 ,获得积分10
6秒前
7秒前
SHD完成签到 ,获得积分10
7秒前
9秒前
严明完成签到,获得积分10
10秒前
樱悼柳雪完成签到,获得积分10
10秒前
11秒前
小宝完成签到 ,获得积分10
14秒前
17秒前
就晚安喽完成签到 ,获得积分10
17秒前
快乐的迷勒完成签到,获得积分10
18秒前
葛力完成签到,获得积分10
18秒前
深情安青应助科研通管家采纳,获得10
20秒前
Jasper应助科研通管家采纳,获得10
20秒前
牡丹花下发布了新的文献求助10
21秒前
丁丁完成签到 ,获得积分10
21秒前
aaaaa发布了新的文献求助10
23秒前
魔法师完成签到,获得积分10
23秒前
释金松完成签到 ,获得积分10
24秒前
24秒前
25秒前
shan发布了新的文献求助10
26秒前
HuiHui完成签到,获得积分10
28秒前
杨昕发布了新的文献求助10
28秒前
Yolo完成签到 ,获得积分10
29秒前
知性的幻巧完成签到,获得积分20
30秒前
嘟嘟嘟嘟完成签到,获得积分10
30秒前
Dana完成签到 ,获得积分10
31秒前
互助遵法尚德完成签到,获得积分0
31秒前
kitty完成签到 ,获得积分10
31秒前
乐乐乐乐乐乐应助陈静采纳,获得10
32秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Pearson Edxecel IGCSE English Language B 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142499
求助须知:如何正确求助?哪些是违规求助? 2793418
关于积分的说明 7806563
捐赠科研通 2449664
什么是DOI,文献DOI怎么找? 1303383
科研通“疑难数据库(出版商)”最低求助积分说明 626861
版权声明 601309