亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The Florida Scoring System for stratifying children with suspected Sjögren's disease: a cross-sectional machine learning study

医学 队列 潜在类模型 横断面研究 儿科 疾病 内科学 机器学习 病理 计算机科学
作者
Wenjie Zeng,Akaluck Thatayatikom,Nicole Winn,Tyler Lovelace,Indraneel Bhattacharyya,Thomas Schrepfer,Ankit Shah,Renato Gonik,Panayiotis V. Benos,Seunghee Cha
出处
期刊:The Lancet Rheumatology [Elsevier BV]
卷期号:6 (5): e279-e290 被引量:6
标识
DOI:10.1016/s2665-9913(24)00059-6
摘要

Background Childhood Sjögren's disease is a rare, underdiagnosed, and poorly-understood condition. By integrating machine learning models on a paediatric cohort in the USA, we aimed to develop a novel system (the Florida Scoring System) for stratifying symptomatic paediatric patients with suspected Sjögren's disease. Methods This cross-sectional study was done in symptomatic patients who visited the Department of Pediatric Rheumatology at the University of Florida, FL, USA. Eligible patients were younger than 18 years or had symptom onset before 18 years of age. Patients with confirmed diagnosis of another autoimmune condition or infection with a clear aetiological microorganism were excluded. Eligible patients underwent comprehensive examinations to rule out or diagnose childhood Sjögren's disease. We used latent class analysis with clinical and laboratory variables to detect heterogeneous patient classes. Machine learning models, including random forest, gradient-boosted decision tree, partial least square discriminatory analysis, least absolute shrinkage and selection operator-penalised ordinal regression, artificial neural network, and super learner were used to predict patient classes and rank the importance of variables. Causal graph learning selected key features to build the final Florida Scoring System. The predictors for all models were the clinical and laboratory variables and the outcome was the definition of patient classes. Findings Between Jan 16, 2018, and April 28, 2022, we screened 448 patients for inclusion. After excluding 205 patients due to symptom onset later than 18 years of age, we recruited 243 patients into our cohort. 26 patients were excluded because of confirmed diagnosis of a disorder other than Sjögren's disease, and 217 patients were included in the final analysis. Median age at diagnosis was 15 years (IQR 11–17). 155 (72%) of 216 patients were female and 61 (28%) were male, 167 (79%) of 212 were White, and 20 (9%) of 213 were Hispanic, Latino, or Spanish. The latent class analysis identified three distinct patient classes: class I (dryness dominant with positive tests, n=27), class II (high symptoms with negative tests, n=98), and class III (low symptoms with negative tests, n=92). Machine learning models accurately predicted patient class and ranked variable importance consistently. The causal graphical model discovered key features for constructing the Florida Scoring System. Interpretation The Florida Scoring System is a paediatrician-friendly tool that can be used to assist classification and long-term monitoring of suspected childhood Sjögren's disease. The resulting stratification has important implications for clinical management, trial design, and pathobiological research. We found a highly symptomatic patient group with negative serology and diagnostic profiles, which warrants clinical attention. We further revealed that salivary gland ultrasonography can be a non-invasive alternative to minor salivary gland biopsy in children. The Florida Scoring System requires validation in larger prospective paediatric cohorts. Funding National Institute of Dental and Craniofacial Research, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Heart, Lung, and Blood Institute, and Sjögren's Foundation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wuzhh发布了新的文献求助10
6秒前
13秒前
zoye完成签到 ,获得积分10
15秒前
16秒前
残月初升发布了新的文献求助10
16秒前
乙予安完成签到,获得积分10
18秒前
wuzhh完成签到,获得积分10
20秒前
Criminology34应助乙予安采纳,获得10
22秒前
ttzziy完成签到 ,获得积分10
23秒前
池雨完成签到 ,获得积分10
33秒前
33秒前
无花果应助GGBoy采纳,获得10
37秒前
Aalph发布了新的文献求助10
39秒前
43秒前
薄雪草完成签到,获得积分10
45秒前
汤姆完成签到,获得积分10
45秒前
沈以菱发布了新的文献求助10
45秒前
47秒前
ZJ完成签到,获得积分10
49秒前
残月初升完成签到,获得积分10
51秒前
1分钟前
迷路的沛芹完成签到 ,获得积分10
1分钟前
jiaxiangxia完成签到 ,获得积分10
1分钟前
Meyako完成签到 ,获得积分0
1分钟前
梅思寒完成签到 ,获得积分10
1分钟前
星辰大海应助科研通管家采纳,获得10
1分钟前
CipherSage应助科研通管家采纳,获得10
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
1分钟前
1分钟前
Owen应助吼吼哈嘿采纳,获得10
1分钟前
Lucky完成签到,获得积分10
1分钟前
张宁完成签到,获得积分10
1分钟前
1分钟前
GGBoy发布了新的文献求助10
1分钟前
后山种仙草完成签到,获得积分10
1分钟前
hahahan完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5301819
求助须知:如何正确求助?哪些是违规求助? 4449255
关于积分的说明 13848057
捐赠科研通 4335344
什么是DOI,文献DOI怎么找? 2380256
邀请新用户注册赠送积分活动 1375227
关于科研通互助平台的介绍 1341303