The study of the functional living organism through biological phenomena and their piezoelectric and electromagnetic interaction of particles and energy in the functional cells of organ systems that sustain life through homeostasis, and their relationship with the external environment, can be observed as a unique effect called the biopiezoelectromagnetic effect. Research in sciences, combined with the use of innovative technological tools and instruments at scales ranging from the subatomic to the astrophysical, have made it possible to observe, through these individual or combined effects, a phenomenon that is repeated in all structures: the conservation of elemental information. This approach makes it possible to research from the particle to the functional living organism in its environment and vice versa. It is possible to propose theories that link energy, particles and cells and their organised structural complexes within the same framework, analysing the biopiezoelectromagnetic effect and the constant effort to maintain the homeostasis of living organisms in an entropic environment. Biomaterials composed of crystals and quasicrystals promote the piezoelectric effect in living tissue-biomaterial contact. The piezoelectric effect is already known to stimulate and form a fibrocartilaginous bone callus and its subsequent hardening into mature bone but has never been directly associated with homeostasis, osseointegrated implants and biomaterial bonding. The synthesis described by evidence-based experiments over the past centuries is robust to describe the biopiezoelectromagnetic effect as a cascade of events in the functional living organism to maintain homeostasis and its binding properties as the basis of osseointegration and the foundation of biocompatibility.