已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Learning Part Segmentation from Synthetic Animals

计算机科学 分割 人工智能 图像分割 计算机视觉
作者
Jiawei Peng,Ju He,Prakhar Kaushik,Zihao Xiao,Jiteng Mu,Alan Yuille
标识
DOI:10.1109/wacvw60836.2024.00015
摘要

Semantic part segmentation provides an intricate and interpretable understanding of an object, thereby benefiting numerous downstream tasks. However, the need for exhaustive annotations impedes its usage across diverse object types. This paper focuses on learning part segmentation from synthetic animals, leveraging the Skinned Multi-Animal Linear (SMAL) models to scale up existing synthetic data generated by computer-aided design (CAD) animal models. Compared to CAD models, SMAL models generate data with a wider range of poses observed in real-world scenarios. As a result, our first contribution is to construct a synthetic animal dataset of tigers and horses with more pose diversity, termed Synthetic Animal Parts (SAP). We then benchmark Syn-to-Real animal part segmentation from SAP to PartImageNet, namely SynRealPart, with existing semantic segmentation domain adaptation methods and further improve them as our second contribution. Concretely, we examine three Syn-to-Real adaptation methods but observe relative performance drop due to the innate difference between the two tasks. To address this, we propose a simple yet effective method called Class-Balanced Fourier Data Mixing (CB-FDM). Fourier Data Mixing aligns the spectral amplitudes of synthetic images with real images, thereby making the mixed images have more similar frequency content to real images. We further use Class-Balanced Pseudo-Label Re-Weighting to alleviate the imbalanced class distribution. We demonstrate the efficacy of CB-FDM on SynRealPart over previous methods with significant performance improvements. Remarkably, our third contribution is to reveal that the learned parts from synthetic tiger and horse are transferable across all quadrupeds in PartImageNet, further underscoring the utility and potential applications of animal part segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追寻的鹤完成签到 ,获得积分10
1秒前
小二郎应助恶恶么v采纳,获得10
1秒前
隐形曼青应助cc采纳,获得10
3秒前
一屋鱼完成签到 ,获得积分10
3秒前
Ly完成签到,获得积分10
3秒前
二小儿完成签到,获得积分20
4秒前
ADDDGDD完成签到,获得积分10
4秒前
jiayou发布了新的文献求助10
8秒前
FashionBoy应助Miss-Li采纳,获得10
8秒前
8秒前
干净博涛完成签到 ,获得积分10
9秒前
12秒前
赘婿应助科研通管家采纳,获得10
13秒前
慕青应助科研通管家采纳,获得10
13秒前
丘比特应助科研通管家采纳,获得10
13秒前
毛毛完成签到,获得积分10
13秒前
14秒前
旭a发布了新的文献求助10
14秒前
zhangyt发布了新的文献求助10
16秒前
16秒前
Zhang发布了新的文献求助10
18秒前
我是屁股最红的小猴子完成签到,获得积分10
20秒前
21秒前
bkagyin应助YX采纳,获得10
22秒前
Miss-Li发布了新的文献求助10
23秒前
24秒前
fang完成签到 ,获得积分10
25秒前
吾侪发布了新的文献求助10
25秒前
26秒前
27秒前
27秒前
Hello应助张晓念采纳,获得10
29秒前
林老师完成签到 ,获得积分10
29秒前
震九洲发布了新的文献求助10
33秒前
火山发布了新的文献求助10
34秒前
笑点低的云朵应助zhangyt采纳,获得10
35秒前
Q123ba叭完成签到 ,获得积分10
35秒前
南冥完成签到 ,获得积分10
35秒前
37秒前
38秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330247
求助须知:如何正确求助?哪些是违规求助? 2959843
关于积分的说明 8597367
捐赠科研通 2638376
什么是DOI,文献DOI怎么找? 1444234
科研通“疑难数据库(出版商)”最低求助积分说明 669078
邀请新用户注册赠送积分活动 656628