Learning Part Segmentation from Synthetic Animals

计算机科学 分割 人工智能 图像分割 计算机视觉
作者
Jiawei Peng,Ju He,Prakhar Kaushik,Zihao Xiao,Jiteng Mu,Alan Yuille
标识
DOI:10.1109/wacvw60836.2024.00015
摘要

Semantic part segmentation provides an intricate and interpretable understanding of an object, thereby benefiting numerous downstream tasks. However, the need for exhaustive annotations impedes its usage across diverse object types. This paper focuses on learning part segmentation from synthetic animals, leveraging the Skinned Multi-Animal Linear (SMAL) models to scale up existing synthetic data generated by computer-aided design (CAD) animal models. Compared to CAD models, SMAL models generate data with a wider range of poses observed in real-world scenarios. As a result, our first contribution is to construct a synthetic animal dataset of tigers and horses with more pose diversity, termed Synthetic Animal Parts (SAP). We then benchmark Syn-to-Real animal part segmentation from SAP to PartImageNet, namely SynRealPart, with existing semantic segmentation domain adaptation methods and further improve them as our second contribution. Concretely, we examine three Syn-to-Real adaptation methods but observe relative performance drop due to the innate difference between the two tasks. To address this, we propose a simple yet effective method called Class-Balanced Fourier Data Mixing (CB-FDM). Fourier Data Mixing aligns the spectral amplitudes of synthetic images with real images, thereby making the mixed images have more similar frequency content to real images. We further use Class-Balanced Pseudo-Label Re-Weighting to alleviate the imbalanced class distribution. We demonstrate the efficacy of CB-FDM on SynRealPart over previous methods with significant performance improvements. Remarkably, our third contribution is to reveal that the learned parts from synthetic tiger and horse are transferable across all quadrupeds in PartImageNet, further underscoring the utility and potential applications of animal part segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
huangJP完成签到,获得积分10
1秒前
情怀应助Tira采纳,获得10
1秒前
王阳洋完成签到,获得积分10
1秒前
1秒前
2秒前
通~发布了新的文献求助10
2秒前
李爱国应助非常可爱采纳,获得20
2秒前
2秒前
3秒前
阿敏发布了新的文献求助10
4秒前
JamesPei应助小憩采纳,获得10
4秒前
jkhjkhj发布了新的文献求助10
4秒前
风中香之发布了新的文献求助30
4秒前
忍冬完成签到,获得积分10
5秒前
Zhong发布了新的文献求助10
6秒前
胡图图关注了科研通微信公众号
6秒前
爱吃泡芙发布了新的文献求助20
6秒前
xiuxiu_27发布了新的文献求助10
6秒前
小书包完成签到,获得积分10
7秒前
xxx发布了新的文献求助10
7秒前
直率的钢铁侠完成签到,获得积分10
7秒前
大模型应助Elaine采纳,获得10
8秒前
花痴的骁完成签到 ,获得积分10
8秒前
F冯发布了新的文献求助10
9秒前
干卿完成签到,获得积分10
9秒前
9秒前
共享精神应助Zhong采纳,获得10
9秒前
le000000完成签到,获得积分10
10秒前
10秒前
爱笑向松完成签到 ,获得积分10
10秒前
华仔应助钟是一梦采纳,获得10
11秒前
11秒前
11秒前
11秒前
里已经完成签到,获得积分10
12秒前
spring完成签到 ,获得积分10
12秒前
13秒前
Kung完成签到 ,获得积分10
13秒前
动听的代曼完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740